Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
le bui trung thanh

cho hinh thang can ABCD (AB//CD) có góc A =B=60 độ, AB=4,5 cm, AD=BC=2cm.tính độ dài đáy CD và diên tích hinh thang cân ABCD

Ngô Chi Lan
29 tháng 8 2020 lúc 15:32

A B C D E F

Bài làm:

Từ D,E kẻ DE,CF vuông góc với AB \(\left(E,F\in AB\right)\)

Xét trong Δ vuông ADE tại D có góc A bằng 60 độ

=> \(\widehat{ADE}=30^0\)

Vì tam giác ADE có: \(\hept{\begin{cases}\widehat{A}=60^0\\\widehat{ADE}=30^0\\\widehat{AED}=90^0\end{cases}}\) => \(AE=\frac{AD}{2}=\frac{2}{2}=1\left(cm\right)\)

Tương tự tính được: \(BF=1\left(cm\right)\)

=> \(FE=AB-AE-BF=4,5-2=2,5\left(cm\right)\)

Vì DC // FE và DE // FC nên theo t/c đoạn chắn

=> DC = FE = 2,5 (cm)

Áp dụng định lý Pytago ta được: \(DE^2=AD^2-AE^2=2^2-1^2=3\left(cm\right)\)

=> \(DE=\sqrt{3}\left(cm\right)\)

Diện tích hình thang cân ABCD là: \(\frac{\left(AB+CD\right).DE}{2}=\frac{7\sqrt{3}}{2}\left(cm^2\right)\)

Khách vãng lai đã xóa
Trần Thu Hà
29 tháng 8 2020 lúc 15:58

         Giải

Kẻ DH vuông góc với AB

\(\sin\widehat{A}=\frac{DH}{AD}\)

\(\Leftrightarrow\sin60^o=\frac{DH}{2}\Rightarrow DH=\sqrt{3}\)

\(\cos A=\frac{AH}{AD}\)

\(AH=\cos60^o.2\)

\(\Rightarrow DC=AB-1-1=4,5-2=2,5\)

\(S\)ABCD=\(\frac{1}{2}.\sqrt{3}.\left(4,5+2,5\right)\)

\(=\frac{7\sqrt{3}}{2}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lê Thị Hà Nhi
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Trần gia linh
Xem chi tiết
lalalalala12345
Xem chi tiết
Tran Tuan Anh
Xem chi tiết
nguyen_minh_hien
Xem chi tiết
Đỗ Khánh Hà
Xem chi tiết
tuyết mai
Xem chi tiết
Phạm Đỗ Bảo Ngọc
Xem chi tiết