Cho hình thang ABCD (AB song song CD) AB = 1/2CD. Gọi M, N lần lượt là trung điểm AD, BC. Đường thẳng MN cắt BD tại P, cắt AC tại Q. CMR MP=PQ=QN.
cho hình thang ABCD (AB//CD), M là trung điểm của AD, N là trung điểm của BC. Gọi P và Q lần lượt là giao điểm của MN với BD và AC. Cho CD= 8cm, MN= 6cm
a) Tính AB ( ko sd đường trung bình)
b) Tính MP, PQ,QN ?
Cho hình thang cân ABCD AB CD, AD BC , có đáy nhỏ AB. Độ dài đường cao BH bằng độ dài đường trung bình MN M thuộc AD, N thuộc BC của hình thang ABCD. Vẽ BE AC E thuộc DC . Gọi O là giao điểm của AC và BD. Chứng minh rằnga MN DE2 b Tam giác DBE vuông cân
Cho hình thang cân ABCD (AB//CD, AD = BC), có đáy nhỏ AB. Độ dài đường cao BH bằng độ dài đường trung bình MN (M thuộc AD, N thuộc BC) của hình thang ABCD. Vẽ BE//AC (E thuộc DC). Gọi O là giao điểm của AC và BD. Chứng minh rằng
a) MN = \(\frac{DE}{2}\)
b) Tam giác OAB cân
c) Tam giác DBE vuông cân
Cho tứ giác ABCD (AB không song song với CD). Giả sử M, N lần lượt là đường trung bình của AB và CD, thỏa mãn: MN = BC + AD / 2 . Gọi I là trung điểm của BD. Chứng minh: ABCD là hình thang.
Cho hình thang ABCD, có AB // CD và AB < CD. Gọi M là giao điểm của AD và BC. Gọi H, E, F, G lần lượt là trung điểm của AM, BM, AC, BD. Chứng minh HEFG là hình thang.
Mình mới học tới Đường trung bình của tam giác nhé.
Cho hình thang cân ABCD (AB//CD) có c=60°,BD là tia phân giác của góc D,EFlà đường trung bình của hình thang ABCD.Tính EF biết AD=3cm,BD=4cm
Cho hình thang cân ABCD (AB//CD) có c=60°,BD là tia phân giác của góc D,EFlà đường trung bình của hình thang ABCD.Tính EF biết AD=3cm,BD=4cm
Cho hình thang cân ABCD (AB//CD) có c=60°,BD là tia phân giác của góc D,EFlà đường trung bình của hình thang ABCD.Tính EF biết AD=3cm,BD=4cm