Cho hình thang ABCD có đáy nhỏ AB , đáy lớn CD . Gọi M và N là trung điểm của cạnh BC và cạnh CD .
a) Nếu độ dài MN là 7,5 cm thì độ dài BD là bao nhiêu ? Vì sao ?
b) Biết tia AB và tia NM cắt nhau tại K . Cm NK = BD
c ) Gọi E là điểm đối xứng của điểm D qua điểm B . CM K là trung điểm của đoạn thẳng CE
Hình bạn tự vẽ nha.
a)Xét \(\Delta BCD\), có:
M,N lần lượt là trung điểm của BC,CD.
\(\Rightarrow MN\) là đường trung bình của \(\Delta BCD\)
\(\Rightarrow MN=\dfrac{1}{2}BD\Rightarrow BD=2MN=2.7,5=15\left(cm\right)\)
b)Xét \(\Delta BKM\) và \(\Delta CNM\), có:
\(\widehat{BMK}=\widehat{CMN}\)(đối đỉnh)
\(MB=MC\)(M là trung điểm của BC)
\(\widehat{KBM}=\widehat{NCM}\)(so le trong và AK//DC vì K nằm trên AB mà AB//CD)
Do đó:\(\Delta BKM=\Delta CNM\left(g.c.g\right)\)
\(\Rightarrow KB=NC\)(hai cạnh tương ứng)
Mà \(ND=NC\)(N là trung điểm của DC)
\(\Rightarrow KB=ND_{\left(1\right)}\)
Lại có:BK//DN(vì K nằm trên AB, N nằm tên CD mà AB//CD)
\(\Rightarrow BKND\) là hình thang\(_{\left(2\right)}\)
Từ (1) và (2) \(\Rightarrow NK=BD\)(theo nhận xét)
c)Xét \(\Delta CDE\), có:
B là trung điểm của DE (do D đx với E qua B)
BK//CD(do K nằm trên AB mà AB//CD)
\(\Rightarrow BK\) là đường trung bình của \(\Delta CDE\)
\(\Rightarrow K\) là trung điểm của CE(đpcm)