Cho hình thang ABCD có AB// CD; AC cắt BD tại O. Gọi M là trung điểm của CD. Các đường tròn ngoại tiếp tam giác AOD và tam giác BOC cắt nhau ở K khác O. Chứng minh góc KOC= góc MOD
Cho tứ giác ABCD nội tiếp (O). Gọi E là giao điểm của AB, CD. F là giao điểm của AC và BD. Đường tròn ngoại tiếp tam giác BDE cắt đường tròn ngoại tiếp tam giác FDC tại điểm K khác D. Tiếp tuyến của O tại BC cắt nhau tại M
a) CM tứ giác BKCM nội tiếp.
b) CM E,M,F thẳng hàng
Cho hình thang cân ABCD (AB > CD, AB // CD) nội tiếp trong đường tròn (O). Kẻ các tiếp tuyến với đường tròn (O) tại A và D chúng cắt nhau ở E. Gọi M là giao điểm của hai đường chéo AC và BD.
1. Chứng minh tứ giác AEDM nội tiếp được trong một đường tròn.
2. Chứng minh AB // EM.
3. Đường thẳng EM cắt cạnh bên AD và BC của hình thang lần lượt ở H và K. Chứng minh M là trung điểm HK.
4. Chứng minh: 2/HK=1/AB+1/CD
Cho hình bình hành ABCD với \(\widehat{BAD}< 90^o\), tia p/g \(\widehat{BCD}< 90^o\)cắt đường tròn ngoại tiếp tam giác BCD tại O ( khác C ) , kẻ đường thẳng (d) đi qua A và vuông góc với CO . Đường thẳng (d) cắt đường thẳng CB, CD lần lượt tại M và N
a) Chứng minh \(\widehat{OBM}=\widehat{ODC}\)
b ) Chứng minh \(\Delta OBM=\Delta ODC\)và O là tâm đường tròn ngoại tiếp tam giác CMN
c) Gọi K là giao điểm của OC và BD , I là tâm đường tròn ngoại tiếp tam giác BCD
Chứng minh rằng : \(\frac{ND}{MB}=\frac{IB^2-IK^2}{KD^2}\)
Bài 1 Cho hình thang cân ABCD (AB > CD, AB // CD) nội tiếp trong đường tròn
(O). Kẻ các tiếp tuyến với đường tròn (O) tại A và D chúng cắt nhau ở E. Gọi M là giao
điểm của hai đường chéo AC và BD.
1. Chứng minh tứ giác AEDM nội tiếp được trong một đường tròn.
2. Chứng minh AB // EM.
3. Đường thẳng EM cắt cạnh bên AD và BC của hình thang lần lượt ở H và K.
Chứng minh M là trung điểm HK.
4. Chứng minh \(\frac{2}{HK}=\frac{1}{AB}+\frac{1}{CD}\)
Cho hình thang cân ABCD (AB>CD, AB//CD) nội tiếp trong đường tròn (O). Kẻ các tiếp tuyến với đường tròn (O) tại A và D chúng cắt nhau ở E. Gọi M là giao điểm của hai đường chéo AC và BD.
a) Chứng minh tứ giác AEDO nội tiếp được trong một đường tròn.
b) chứng minh AB// EM
c) đường thẳng EM cắt cạnh bên AD và BC của hình thang lần lượt ở H và K. Chứng minh 2/HK= 1/AB +1/CD.
Cho tứ giác ABCD nội tiếp đường tròn tâm O (AB>CD). GỌi giao điểm của AC và BD là I. Đường tròn ngoại tiếp tam giác ADI cắt AB và CD lần lượt tại E và F, EF cắt AC và BD tại M, N.
a, Chứng minh IE = IF
b, Chứng minh EF//BC và tứ giác AMND nội tiếp
c, Gọi K là tâm đường tròn ngoại tiếp tam giác ADI.
Chứng minh rằng KI vuông góc với BC
(Mình cần làm giúp phần (c) thôi ạ, cảm ơn)
Cho đường tròn (O; R), dây AB. Trên cung lớn AB lấy điểm C sao cho A < CB. Các đường cao AE và BF của tam giác ABC cắt nhau tại I.
d) Đường tròn ngoại tiếp tam giác CEF cắt đường tròn (O; R) tại điểm thứ hai là K (K khác C). Vẽ đường kính CD của (O; R). Gọi P là trung điểm của AB. Chứng minh rằng ba điểm K, P, D thẳng hàng.
Cho tam giác nhọn ABC có AB<AC, nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I). Điểm D thuộc cạnh AC sao cho \(\widehat{ABD}=\widehat{ACB}\). Đường thẳng AI cắt đường tròn ngoại tiếp tam giác DIC tại điểm thứ hai là E và cắt đường tròn (O) tại điểm thứ hai là Q. Đường thẳng đi qua E và song song với AB cắt BD tại P.
a) Chứng minh tam giác QBI cân
b)Chứng minh BP.BI=BE.BQ
c) Gọi J là tâm đường tròn nội tiếp tam giác ABD, K là trung điểm của JE. Chứng minh PK//JB
Cho tứ giác ABCD nội tiếp đường tròn (O) với AC cắt BD tại P, M là trung điểm AD. K và L lần lượt là hình chiếu của P lên AB và CD. Gọi S,T lần lượt là tâm ngoại tiếp các tam giác KMA và LMD. Chứng minh rằng: KS.BT=CS.LT ?