Cho tứ giác ABCD có AB = 1,5cm, BC = 2,5cm, CD = 6cm, AD = 5cm, AC = 3cm. Tứ giác ABCD là hình gì?
Trên đường chéo AC của hình vuông ABCD, ta lấy điểm E (khác A và C). Qua E kẻ đường thẳng song song với các cạnh và cắt AB, BC, CD, DA lần lượt tại M, N, P, Q. Tính diện tích tứ giác MNPQ theo diện tích hình vuông ABCD.
Cho hình thang ABCD có AB//CD, AB là đáy nhỏ. Qua trung điểm I của BC, kẻ đường thẳng song song với AD lần lượt cắt AB ở M và CD ở N.
a. CM: Diện tích của ABCD bằng diện tích của AMND
b. Kẻ AH và DK lần lượt vuông góc với MN. CM: Diện tích của ABCD bằng diện tích của AHDK
Cho hình thang ABCD (AB song song với CD); O là giao điểm hai đường chéo AC và BD. Đường thẳng qua ô song song với AB cắt AD và BC lần lượt tại M và N
a. Chứng minh rằng :1/AB+1/CD=2/MN
b. Biết diện tích các tam giác AOB; COD theo thứ tự là a^2 và b^2.Hãy tính diện tích hình thang ABCD
cho hình chữ nhật ABCD có AB = 6cm , Ad = 4 cm . M là một điểm bất kì trên cạnh AB ( m không trùng với a và B ) qua M kẻ các đuqowngf thẳng d ,d' lần lượt song song với AC, BD , chúng cắt các cạnh BC , AD theo thứ tự tại N,Q . Qua N kẻ đường thẳng song song với BD cắt CD tại P . Tìm vị trí của M trên AB để diện tích tứ giác MNPQ là lớn nhất
Cho hình thang ABCD có AB//Cd. Trên AD lấy 2 điểm M và E sao cho AM=ME=ED. QUa M và E kẻ các đường thằng song song với AB cắt BC lần lượt tại N và F. Biết AB=12cm,EF=18cm. ĐỘ dài CD là
1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF
2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất.
3.. ABCD là hình chữ nhật có AB //CD, AB = 2CB. Từ A kẻ đường thẳng vuông góc với đường chéo BD tại H. Trên HB lấy điểm K sao cho HK = HA. Từ K kẻ đường thẳng song song với AH cắt AB tại E. Lấy M trung điểm DE, tia AM cắt DB tại N, cắt DC tại P.
Tính tỷ số diện tích tam giác AND với diện tam giác PMD?
CHO HÌNH THANG ABCD (AB//CD, AB=24, CD=36). M THUỘC CẠNH AD SAO CHO MA=2MD. QUA M VẼ ĐƯỜNG THẲNG SONG SONG VỚI 2 ĐÁY, CẮT BC, AC, BD LẦN LƯỢT TẠI N, P, Q. TÍNH MN, PQ
Cho hình vuông ABCD(AB//CD) góc A =90 độ có đường chéo AB vuông cạnh bên BC Biết AB = 12cm, AD=9 cm
a/ chứng minh tam giác ABD đồng dạng Tam giác BDC
b/Tính diện tích hình thang ABCD
c/gọi E là TRung điểm của DC.từ M bất kì trên Ec kẻ dường thẳng song song với BE cắt BC tại N và BD tại K. Chứng minh MN+NK=2EB
Cho hìh thang vuông ABCD ( AB // CD ) có góc A = góc D= 90 độ. Cho biết cạnh AB =12 độ; CD = 28 cm ; AD = 9cm. Lấy M là 1 điểm thuộc AD sao cho AM = 5CM. Kẻ MN song song vs AB cắt BD tại Q và cắt BC tại N
a) Chứng minh: \(\frac{AM}{AD}=\frac{BN}{BC}\)
b) Tính MD ; BQ ; BN; NC
c) Tính chu vi và diện tích của tam giác BDC