Cho hình lập phương ABCD. A'B'C'D', gọi M và N lần lượt là tâm của các hình vuông ABCD và DCC'D'. Mặt phẳng (A'MN) chia khối lập phương trình hai phần có thể tích là V₁ và V₂ (V₁ < V₂). Tính tỷ số V₂/V₁
A. 5/2
B. 5/3
C. 3/2
D. 2
Cho hình lập phương ABCD. A'B'C'D' có cạnh bằng a. Gọi O và O' lần lượt là tâm các hình vuông ABCD và A'B'C'D'. Gọi M, N lần lượt là trung điểm của các cạnh B'C' và CD. Tính thể tích khối tứ diện OO'MN.
A. a 3 8
B. a3
C. a 3 12
D. a 3 24
Cho hình lập phương ABCD.A'B'C'D' với O' là tâm hình vuông A'B'C'D'. Biết rằng tứ diện O'BCD có thể tích bằng 6 a 3 . Tính thể tích V của khối lập phương ABCD.A'B'C'D'.
A. V = 12 a 3
B. V = 6 3 a 3
C. V = 2 3 a 3
D. V = 9 3 a 3
Cho hình lập phương A B C D . A ' B ' C ' D ' có cạnh bằng a. Gọi M, N lần lượt nằm trên các cạnh A ' B ' và sao cho M A ' = M B ' và N B = 2 N C . Mặt phẳng D M N chia khối lập phương đã cho thành hai khối đa diện. Gọi V H là thể tích khối đa diện chứa đỉnh A , V H ' là thể tích khối đa diện còn lại. Tỉ số V H V H ' bằng
A. 151 209
B. 209 360
C. 2348 3277
D. 151 360
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Các điểm E và F lần lượt là trung điểm của C'B' và C'D'. Mặt phẳng ( AEF) cắt khối lập phương đã cho thành hai phần, gọi V1 là thể tích khối chứa điểm A' và V2 là thể tích khối chứa điểm C’. Khi đó tỉ số V 1 V 2 bằng
A. 25 47
B. 1
C. 17 25
D. 8 17
Cho hình lập phương ABCD.A'B'C'D' có cạnh a. Một khối nón có đỉnh là tâm của hình vuông ABCD và đáy là hình tròn nội tiếp hình vuông A'B'C'D'. Kết quả tính diện tích toàn phần của khối nón có dạng bằng π a 2 4 ( b + c ) với b, c là hai số nguyên dương và b > 1 . Tính b.c.
Cho hình lập phương ABCD.A’B’C’D’. Gọi O, O’ lần lượt là tâm của hai hình vuông ABCD và A’B’C’D’. Gọi V1 là thể tích của khối trụ xoay có đáy là 2 đường tròn ngoại tiếp hình vuông ABCD và A’B’C’D’, V2 là thể tích khối nón tròn xoay đỉnh O và có đáy là đường tròn nội tiếp hình vuông A’B’C’D’. Tỷ số thể tích V 1 V 2 là
A. 4
B. 8
C. 6
D. 2
Cho khối lập phương ABCD.A'B'C'D' cạnh bằng a. Gọi E và F lần lượt là trung điểm của B'C' và C'D'. Mặt phẳng (AEF) chia khối lập phương đó thành hai khối đa diện (H) và (H') trong đó (H) là khối đa diện chứa đỉnh A'. Tính thể tích của (H).
Cho tứ diện ABCD có thể tích bằng V. Gọi B’ và D’ lần lượt là trung điểm của cạnh AB và AD. Mặt phẳng(CB'D’) chia khối tứ diện thành hai phần. Tính theo V thể tích khối chóp C.B’D’DB?
A. 3 V 2
B. V 4
C. V 2
D. 3 V 4