Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 2. Mặt phẳng (P) đi qua đường chéo BD’ cắt các cạnh CD, A'B' và tạo với hình lập phương một thiết diện, khi diện tích thiết diện đạt giá trị nhỏ nhất, cosin góc tạo bởi (P) và mặt phẳng (ABCD) bằng
A. 10 4
B. 6 3
C. 6 6
D. 3 3
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a, một mặt phẳng α cắt các cạnh M.N,P,Q lần lượt tại M, N, P, Q. Biết A M = 1 3 a , C P = 2 5 a . Thể tích khối đa diện ABCD.MNPQ là
Cho hình lập phương A B C D . A ' B ' C ' D ' có cạnh bằng a, một mặt phẳng α cắt các cạnh A A ' , B B ' , C C ' , D D ' lần lượt tại M , N , P , Q . Biết A M = 1 3 a , C P = 2 5 a . Thể tích khối đa diện ABCD.MNPQ là
A. 11 30 a 2
B. a 3 3
C. 2 a 3 3
D. 11 15 a 3
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Xét tứ diện AB'CD'. Cắt tứ diện đó bằng mặt phẳng đi qua tâm của hình lập phương và song song với mặt phẳng (ABC). Tính diện tích của thiết diện thu được
Cho hình lập phương A B C D . A ' B ' C ' D ' có cạnh bằng a, gọi α là góc giữa đường thẳng A ' B và mặt phẳng B B ' D ' D . Tính sin α
A. 3 5
B. 3 2
C. 1 2
D. 3 4
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 2. Cắt hình lập phương bằng một mặt phẳng chứa đường chéo AC’. Tìm giá trị nhỏ nhất của diện tích thiết diện thu được.
A. 4
B. 4 2
C. 6
D. 2 6
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 1. Cắt hình lập phương bằng một mặt phẳng đi qua đường chéo BD'. Tìm giá trị nhỏ nhất của diện tích thiết diện thu được.
Cho hình lập phương ABCD.A'B'C'D' có cạnh bên bằng a (tham khảo hình vẽ bên). Gọi α là góc giữa đường thẳng A'C và mặt phẳng (A'B'C'D') thì:
Cho hình lăng trụ đều ABCD.A'B'C'D' có đáy là hình vuông cạnh a. Mặt phẳng α lần lượt cắt các cạnh bên AA’, BB’, CC’ tại 4 điểm M, N, P, Q. Góc giữa mặt phẳng α và mặt phẳng (ABCD) là 60 0 . Diện tích tứ giác MNPQ là :