Cho hình lập phương có cạnh bằng a và một hình trụ có hai đáy là hai hình tròn nội tiếp hai mặt đối diện của hình lập phương. Gọi S 1 là diện tích 6 mặt của hình lập phương, S 2 là diện tích xung quanh của hình trụ. Tỉ số S 2 / S 1 bằng:
A. π /6 B. 1/2
C. π /2 D. π
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Tính diện tích xung quanh của hình trụ và thể tích của khối trụ có hai đáy là hai hình tròn ngoại tiếp hai hình vuông ABCD và A’B’C’D’.
Cho khối trụ có bán kính đáy bằng a và thiết diện đi qua là một hình vuông. Thể tích khối trụ là:
A. 2 π a 3 B. 2 π a 3 /3
C. 4 π a 3 D. π a 3
Cho hình lập phương ABCD.A'B'C'D'. Gọi (H) là hình trụ tròn xoay ngoại tiếp hình lập phương đó. Khi đó: V H V ABCD . A ' B ' C ' D '
A. 3/2 B. π /2
C. π /3 D. π /( 3 )
Cho hình lập phương ABCD.A’B’C’D’. Gọi O, O’ lần lượt là tâm của hai hình vuông ABCD và A’B’C’D’. Gọi V1 là thể tích của khối trụ xoay có đáy là 2 đường tròn ngoại tiếp hình vuông ABCD và A’B’C’D’, V2 là thể tích khối nón tròn xoay đỉnh O và có đáy là đường tròn nội tiếp hình vuông A’B’C’D’. Tỷ số thể tích V 1 V 2 là
A. 4
B. 8
C. 6
D. 2
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Tính diện tích xung quanh của hình trụ có đường tròn hai đáy ngoại tiếp các hình vuông ABC.D và A’B’C’D’.
Diện tích xung quanh của hình trụ có bán kính đáy a và đường cao a 3 là:
A. 2 π a 2 3 B. 2 π a 2
C. π a 2 D. π a 2 3
Cho một hình trụ tròn xoay và hình vuông (ABCD) cạnh a có hai đỉnh liên tiếp A, B nằm trên đường tròn đáy thứ nhất của hình trụ, hai đỉnh còn lại nằm trên đường tròn đáy thứ hai của hình trụ. Mặt phẳng (ABCD) tạo với đáy hình trụ góc . Thể tích của hình trụ bằng
Cho một hình trụ tròn xoay và hình vuông ABCD cạnh a có hai đỉnh A, B nằm trên đường tròn đáy thứ nhất của hình trụ, hai đỉnh còn lại nằm trên đường tròn đáy thứ hai của hình trụ. Mặt phẳng (ABCD) tạo với đáy hình trụ một góc 45°. Tính thể tích của khối trụ.
A. πa 3 2 16
B. πa 3 2 4
C. πa 3 2 2
D. 3 πa 3 2 16