Cho hình lăng trụ tam giác đều A B C . A ' B ' C ' có tất cả các cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB và B’C’. Mặt phẳng (A'MN) cắt cạnh BC tại P. Thể tích của khối đa diện MBP.A'B'N bằng
A. 7 a 3 3 32
B. a 3 3 32
C. 7 a 3 3 68
D. 7 a 3 3 96
Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a. Gọi M, N lần lượt là trung điểm các cạnh AB, B'C'. Côsin góc giữa hai đường thẳng MN và AC bằng
A. 1 3
B. 2 3
C. 5 3
D. 5 5
Cho hình lăng trụ tam giác ABC.A'B'C' có đáy là tam giác đều cạnh 3 . Gọi I là trung điểm của cạnh BC. Biết thể tích lăng trụ là V = 6, khoảng cách từ I đến mặt phẳng (A'B'C') là:
A . 8 3
B . 8 3 3
C . 4 3
D . 4 3 3
Cho hình lăng trụ tam giác ABC.A'B'C'có tất cả các cạnh bên và cạnh đáy đều bằng a. Các cạnh bên của lăng trụ tạo với mặt phẳng đáy góc 60 ο và hình chiếu vuông góc của đỉnh A lên mặt phẳng (A'B'C') trùng với trung điểm của cạnh B'C'.
a) Tính khoảng cách giữa hai mặt phẳng đáy của lăng trụ.
b) Chứng minh rằng mặt bên BCC'B' là một hình vuông.
Cho tứ diện đều ABCD có cạnh bằng 3. Gọi M, N lần lượt là trung điểm các cạnh AD, BD. Gọi P là điểm trên cạnh AB sao cho . Tính thể tích V của khối tứ diện PMNC
Cho hình lăng trụ tam giác đều có tất cả các cạnh đều bằng a Khi đó thể tích V của khối lăng trụ trên là
Cho hình lăng trụ tam giác đều ABC.A′B′C′ có tất cả các cạnh bằng a. Gọi M,N lần lượt là trung điểm các cạnh AB,B′C′ (tham khảo hình vẽ bên). Côsin góc giữa hai đường thẳng MN và AC bằng
A. 1 3
B. 5 3
C. 2 3
D. 5 5
Cho hình lăng trụ có tất cả các cạnh đều bằng a, đáy là hình lục giác đều, góc tạo nên bởi cạnh bên và đáy bằng 60 0 . Tính thể tích V khối lăng trụ.
A. V = 3 4 a 3
B. V = 3 4 a 3
C. V = 9 4 a 3
D. V = 3 3 2 a 3
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt đáy. Gọi M là trung điểm của BC. Mặt phẳng (P) đi qua A và vuông góc với SM cắt SB, SC lần lượt tại E, F. Biết Tính thể tích V của khối chóp S.ABC