Một khối lăng trụ tam giác có đáy là tam giác đều cạnh 3cm, cạnh bên bằng 2 3 tạo với mặt phẳng đáy một góc 30 0 . Khi đó thể tích khối lăng trụ là:
Cho hình lăng trụ tam giác đều có cạnh đáy bằng a, cạnh bên bằng b. Tính thể tích khối cầu giới hạn bởi mặt cầu đi qua các đỉnh của hình lăng trụ.
Cho lăng trụ tam giác đều có cạnh đáy bằng a, cạnh bên bằng b. Thể tích của khối cầu đi qua các đỉnh của lăng trụ bằng
A. 1 18 3 4 a 2 + b 2 3
B. π 18 3 4 a 2 + 3 b 2 3
C. π 18 3 4 a 2 + b 2 3
D. π 18 2 4 a 2 + 3 b 2 3
Cho lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác đều cạnh bằng a. Hình chiếu vuông góc của A' trên mặt phẳng (ABC) trùng với trung điểm H của cạnh AB. Góc giữa cạnh bên của lăng trụ và mặt đáy bằng 300. Tính thể tích của lăng trụ đã cho theo a.
A. 3a3/4
B. a3/4
C. a3/24
D. a3/8
Cho hình lăng trụ có đáy là tam giác đều cạnh a, cạnh bên bằng 2a và tạo với đáy góc 300. Thể tích của khối lăng trụ đó là
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A, mặt bên BCC'B' là hình vuông cạnh 2a. Tính thể tích V của khối lăng trụ ABC.A'B'C'.
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a, hình chiếu vuông góc của A' lên đáy (ABC) trùng với trọng tâm của tam giác ABC và cạnh bên tạo với đáy một góc bằng 60 ° . Thể tích của hình lăng trụ là:
A. 3 a 3 12 B. 3 a 3 8
C. 3 a 3 4 D. 3 a 3 2
cho hình lăng trụ abc.a'b'c' có đáy abc là tam giác đều cạnh a, cạnh bên bằng a căn 3 và hình chiếu của A' lên mặt phẳng (ABC) trùng với trung điểm của BC. Tính thể tích của khối lăng trụ đó
Cho hình lăng trụ tam giác đều có cạnh đáy và cạnh bên đều bằng a. Gọi S là diện tích xung quanh của hình lăng trụ trên. Tính S.
A. S = 3 a 2 4
B. S = 5a2
C. S = 3 a 2 2
D. S = 3a2.