Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác đều cạnh bằng a. Mặt bên ABB’A’ có diện tích bằng a 2 3 . Gọi M; N lần lượt là trung điểm của A’B; A’C . Tính tỉ số thể tích của hai khối chóp A’. AMN và A’.ABC.
A. 1 2
B. 1 3
C. 1 4
D. 1 5
Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của A’ lên (ABC) là trung điểm cạnh AB, góc giữa đường thẳng A’C và mặt đáy bằng 60 0 . Tính thể tích khối lăng trụ đã cho.
A. 3 a 3 3 8 .
B. a 3 3 8 .
C. 3 a 3 3 16 .
D. 3 a 3 8 .
Cho lăng trụ tam giác đều ABC.A’B’C’, cạnh đáy bằng a. Gọi N, I lần lượt là trung điểm của AB, BC; góc giữa hai mặt phẳng (C’AI) và (ABC) bằng 60°. Tính theo a thể tích khối chóp NAC’I?
A. 32 a 3 3
B. a 3 32
C. a 3 3 32
D. a 3 3 4
Cho lăng trụ A B C . A ' B ' C ' có đáy ABC là tam giác đều cạnh 2a, hình chiếu vuông góc của A lên mặt phẳng ( A ' B ' C ' ) là trung điểm H của A’B’. Gọi M, N lần lượt là trung điểm của A A ' , B ' C ' . Biết rằng AH = 2a và α là số đo của góc giữa đường thẳng MN và mặt phẳng ( A C ' H ) . Khi đó cos α bằng
Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của A’ trên (ABC) là trung điểm của AB, góc giữa A’C và mặt đáy bằng 60 ° . Khoảng cách giữa hai đường thẳng AC và BB’ bằng
Cho hình lăng trụ tam giác đều ABC.A'B'C' có AB= 2 3 và AA'=2. Gọi M, N, P lần lượt là trung điểm của các cạnh A’B’, A’C’ và BC. Cosin của góc tạo bởi hai mặt phẳng (AB'C') và (MNP) bằng
Cho lăng trụ tam giác đều ABC.A’B’C’. Trên A’B, kéo dài lấy điểm M sao cho B'M= 1 2 A'B'. Gọi N, P lần lượt là trung điểm của A’C’ và B’B. Mặt phẳng (MNP) chia khối lăng trụ ABC.A’B’C’ thành hai khối đa diện trong đó khối đa diện chứa đỉnh A’ có thể tích V 1 và khối đa diện chứa đỉnh C’ có thể tích V 2 . Tính V 1 V 2 .
Cho hình lăng trụ ABC.A’B’C’ có đáy tam giác đều cạnh a. Hình chiếu vuông góc của A’ trên (ABC) là trung điểm của AB, góc giữa A’C và mặt đáy bằng 600. Tính khoảng cách h giữa hai đường thẳng AC và BB.
Hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác vuông tại A, hình chiếu vuông góc của B trên mặt phẳng (A'B'C') trùng với trung điểm của cạnh B’C’, tam giác BB’C’ là tam giác đều cạnh 2a, AB=a Thể tích của khối lăng trụ ABC.A’B’C’ là