Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông, AB=BC=a. Biết rằng góc giữa hai mặt phẳng (ACC’) và (AB’C’) bằng 60 0 (tham khảo hình vẽ bên). Thể tích của khối chóp B’.ACC’A’ bằng
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A, AB=AA'=a (tham khảo hình vẽ bên). Tính tang của góc giữa đường thẳng BC' và mặt phẳng (ABB'A').
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A, A B = a 3 , B C = 2 a , đường thẳng AC’ tạo với mặt phẳng (BCC’B’) một góc 30 0 (tham khảo hình vẽ). Diện tích mặt cầu ngoại tiếp lăng trụ đã cho bằng
Cho hình lăng trụ đứng ABC,A’B’C’ có đáy ABC là tam giác vuông cân đỉnh C, A’C=a. Gọi x là góc giữa hai mặt phẳng (A’CB) và (ABC) để thể tích khối chóp A’.ABC lớn nhất. Tính thể tích lớn nhất của khối chóp A’.AB theo a
A. a 3 3 3
B. a 3 3 9
C. a 3 3 27
D. a 3 3 81
Cho lăng trụ đứng ABCD.A'B'C'D' có đáy là tam giác ABC vuông cân tại A, cạnh BC=a 6 . Góc giữa mặt phẳng (AB'C) và mặt phẳng (BCC'B') bằng 60 0 . Tính thể tích V của khối đa diện
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, cạnh bên SA vuông góc với mặt phẳng đáy, góc tạo bởi hai mặt phẳng (ABC) và (SBC) bằng 60 0 (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng AB và SC bằng :
Cho lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại A với AB = a, AC = a 3 . Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trọng tâm G của tam giác ABC và góc giữa AA’ tạo với mặt phẳng (ABC) bằng 60 ∘ . Gọi V là thể tích khối lăng trụ ABC.A'B'C'. Tính V 3 + V a 3 - 1 .
A. 1.
B. a.
C. a 2 .
D. a 3 .
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A’ trên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Biết thể tích của khối lăng trụ là a 3 3 4 . Khoảng cách giữa hai đường thẳng AA’ và BC bằng
Cho hình chóp SABC có đáy ABC là tam giác vuông tại A, cạnh AB = 2, A B C ^ = 60 ° . Hình chiếu vuông góc của S trên mặt phẳng đáy là trung điểm M của BC, góc giữa SA và mặt đáy bằng 450. Thể tích của khối chóp SABC bằng