Chọn C
Tam giác ABC vuông và AB=BC=a nên ΔABC chỉ có thể vuông tại B.
Ta có A B ⊥ B C A B ⊥ B B ' ⇒ A B ⊥ B C B '
Kẻ
⇒ d = d B ' C , M N = d B ' C , A M N = d C , A M N = d B , A M N
Tứ diện BAMN là tứ diện vuông
Chọn C
Tam giác ABC vuông và AB=BC=a nên ΔABC chỉ có thể vuông tại B.
Ta có A B ⊥ B C A B ⊥ B B ' ⇒ A B ⊥ B C B '
Kẻ
⇒ d = d B ' C , M N = d B ' C , A M N = d C , A M N = d B , A M N
Tứ diện BAMN là tứ diện vuông
Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông BA=BC=a, cạnh bên AA'= a 2 , M là trung điểm của BC. Khoảng cách giữa AM và B'C là:
A . a 2 2
B . a 3 3
C . a 5 5
D . a 7 7
Cho hình lăng trụ đứng ABC.A’B’C’ đáy ABC là tam giác đều, I là trung điểm của AB. Kí hiệu d(AA’, BC) là khoảng cách giữa 2 đường thẳng AA’ và BC thì:
A. d A A ' , B C = A B
B. d A A ' , B C = I C
C. d A A ' , B C = A ' B
D. d A A ' , B C = A C
Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông BA=BC=a, cạnh bên AA'=a 2 , M là trung điểm của BC. Khoảng cách giữa AM và B' C là:
Cho hình lăng trụ ABC. A'B'C' có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A' lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Biết khoảng cách giữa hai đường thẳng AA' và BC bằng a 3 4 . Tính theo a thể tích V của khối lăng trụ ABC. A'B'C'.
A. a 3 3 6
B. a 3 3 12
C. a 3 3 3
D. a 3 3 24
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AB=a, AA'= 2a. Gọi M là trung điểm của đoạn thẳng A'C', I là giao điểm của AM và AC'. Tính khoảng cách từ điểm A đến mặt phẳng (IBC).
A . 2 5 a 5
B . 5 a 5
C . 2 3 a 5
D . 3 a 5
Hình lăng trụ ABC. A'B'C' có đáy ABC là tam giác vuông tại A; AB=1; AC=2. Hình chiếu vuông góc của A' trên (ABC) nằm trên đường thẳng BC. Tính khoảng cách từ điểm A đến mặt phẳng (A'BC).
A. 3 2
B. 1 3
C. 2 5 5
D. 2 3
Cho lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của A’ trên mặt phẳng (ABC) là trung điểm O của cạnh AB. Số đo của góc giữa đường thẳng AA' và mặt phẳng ( A ' B ' C ' ) bằng 60 0 . Gọi I là trung điểm của cạnh B’C’. Khoảng cách giữa hai đường thẳng CI và AB’ bằng
Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AB=a, BC=a 3 góc hợp bởi đường thẳng AA' và mặt phẳng (A'B'C') bằng 45 0 , hình chiếu vuông góc của B' lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Tính thể tích khối lăng trụ ABC.A'B'C'.
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, A B = 2 3 , B C = a , A A ' = 3 a 2 . Khoảng cách giữa hai đường thẳng AC’ và B’C bằng