Chương 1: KHỐI ĐA DIỆN

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc Hưng

Cho hình lăng trụ đều ABCD.A'B'C'D' có cạnh bằng a. Các điểm E, F thay đổi lần lượt thuộc các cạnh BB', DD' sao cho \(\left(EAC\right)\perp\left(FAC\right)\). Tìm giá trị nhỏ nhất của \(V_{ACEF}?\)

Nguyễn Việt Lâm
6 tháng 4 2022 lúc 7:33

Gọi O là giao điểm AC và BD

Do lăng trụ đều \(\Rightarrow AC\perp\left(BDD'B'\right)\Rightarrow AC\perp\left(EOF\right)\)

\(V_{ACEF}=V_{AOEF}+V_{COEF}=2V_{AOEF}=\dfrac{2}{3}AO.S_{OEF}=\dfrac{a\sqrt{2}}{3}.S_{OEF}\)

Đặt \(BE=x;\) \(DF=y\), trên BB' lấy G sao cho \(BG=DF=y\)

\(\Rightarrow FG=BD=a\sqrt{2}\) và \(EG=\left|x-y\right|\)

 \(\Rightarrow EF=\sqrt{EG^2+FG^2}=\sqrt{2a^2+\left(x-y\right)^2}\)

\(OE=\sqrt{OB^2+BE^2}=\sqrt{\dfrac{a^2}{2}+x^2}\) ; \(OF=\sqrt{OD^2+DF^2}=\sqrt{\dfrac{a^2}{2}+y^2}\)

Do \(\left(EAC\right)\perp\left(FAC\right)\Rightarrow OE\perp OF\)

\(\Rightarrow OE^2+OF^2=EF^2\)

\(\Rightarrow a^2+x^2+y^2=2a^2+\left(x-y\right)^2\Rightarrow xy=\dfrac{a^2}{2}\)

\(S_{OEF}=\dfrac{1}{2}OE.OF=\dfrac{1}{2}\sqrt{\left(\dfrac{a^2}{2}+x^2\right)\left(\dfrac{a^2}{2}+y^2\right)}=\dfrac{1}{2}\sqrt{\dfrac{a^4}{4}+\left(xy\right)^2+\dfrac{a^2}{2}\left(x^2+y^2\right)}\)

\(=\dfrac{1}{2}\sqrt{\dfrac{a^4}{2}+\dfrac{a^2}{2}\left(x^2+y^2\right)}\ge\dfrac{1}{2}\sqrt{\dfrac{a^4}{2}+\dfrac{a^2}{2}.2xy}=\dfrac{1}{2}\sqrt{\dfrac{a^4}{2}+a^2.\dfrac{a^2}{2}}=\dfrac{a^2}{2}\)

\(\Rightarrow V_{ACEF}\ge\dfrac{a\sqrt{2}}{3}.\dfrac{a^2}{2}=\dfrac{a^3\sqrt{2}}{6}\)

Dấu "=" xảy ra khi \(x=y=\dfrac{a\sqrt{2}}{2}\)

Nguyễn Việt Lâm
6 tháng 4 2022 lúc 7:33

undefined


Các câu hỏi tương tự
Loan Ngô
Xem chi tiết
Nguyễn Văn Hưng
Xem chi tiết
Ngọc Hưng
Xem chi tiết
Hồ Minh Phi
Xem chi tiết
Nguyễn Minh Hằng
Xem chi tiết
Mai Xuân Bình
Xem chi tiết
Sengoku
Xem chi tiết
Nguyễn Hồng Phương Khôi
Xem chi tiết
ngọc
Xem chi tiết