Cho hình lăng trụ ABC.A'B'C' có thể tích bằng V. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, A'C’, BB’. Thể tích của khối tứ diện CMNP bằng
Cho hình lăng trụ đều ABC.A’B’C có AB=2a, AA'=3a Gọi M, N, P lần lượt là trung điểm của AA’, A’C, AC. Tính theo a thể tích V của khối tứ diện B.MNP.
Cho lăng trụ tam giác ABC.A’B’C’ có thể tích là V. Gọi M, N là trung điểm của AB và CC'. Thể tích khối tứ diện B’MCN tính theo V là:
A. V 2
B. V 4
C. V 3
D. V 12
Cho hình lăng trụ ABC.A’B’C’ có thể tích bằng V. Các điểm M, N, P lần lượt thuộc các cạnh AA’, BB’, CC’ sao cho A M A A ' = 1 2 , B N B B ' = C P C C ' = 2 3 . Thể tích khối đa diện ABC.MNP bằng:
A. 2 3 V
B. 9 16 V
C. 20 27 V
D. 11 18 V
Cho khối lăng trụ ABC.A'B'C' . Gọi M là trung điểm của BB' , N là điểm trên cạnh CC' sao cho CN = NC’. Mặt phẳng ( AMN ) chia khối lăng trụ thành hai phần có thể tích V 1 và V 2 như hình vẽ. Tính tỉ số V 1 V 2
A. V 1 V 2 = 5 3
B. V 1 V 2 = 3 2
C. V 1 V 2 = 4 3
D. V 1 V 2 = 7 5
Cho lăng trụ ABC.A’B’C’ có thể tích bằng 6 a 3 Các điểm M, N, P lần lượt thuộc các cạnh AA’, BB’, CC’ sao cho A M A A ' = 1 2 , B N B B ' = 2 3 Tính thể tích V’ của khối đa diện ABC.MNP
A. V ' = 11 27 a 3
B. V ' = 9 16 a 3
C. V ' = 11 3 a 3
D. V ' = 11 18 a 3
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M,N lần lượt là trung điểm của BB', CC'. Mặt phẳng (A'MN) chia khối lăng trụ thành hai phần, V 1 là thể tích của phần đa diện chứa điểm B, V 2 thể tích phần đa diện còn lại. Tính tỉ số V 1 V 2
A. V 1 V 2 = 7 2
B. V 1 V 2 = 2
C. V 1 V 2 = 3
D. V 1 V 2 = 5 2
Cho hình lăng trụ ABC.A'B'C'. Gọi E, F lần lượt là trung điểm của BB' và CC'. Mặt phẳng (AEF) chia khối lăng trụ thành hai phần có thể tích V 1 và V 2 như hình vẽ. Tỉ số V 1 V 2 là
A. 1
B. 1 3
C. 1 4
D. 1 2
Cho hình lăng trụ ABC.A'B'C' Gọi E, F lần lượt là trung điểm của BB¢ và CC¢. Mặt phẳng (AEF) chia khối lăng trụ thành hai phần có thể tích V 1 và V 2 như hình vẽ.
Tỉ số V 1 V 2 là
A. 1 2
B. 1
C. 1 3
D. 1 4