Cho hình lăng trụ ABC.A'B'C' có thể tích bằng V. Gọi M là trung điểm cạnh B B ' , điểm N thuộc cạnh CC' sao cho C N = 2 C ' N . Tính thể tích khối chóp A.BCNM theo V
Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều cạnh a√2 . Gọi I là trung điểm B'C góc giữa AI và đáy bằng 60. Tính thể tích V của khối lăng trụ ABC. A'B'C' .
Cho khối lăng trụ ABC.A'B'C', hình chiếu của điểm A lên mặt phẳng (A'B'C') là trung điểm M của cạnh B'C' và A'M=a 3 , hình chiếu của điểm A lên mặt phẳng (BCC'B') là H sao cho MH song song với BB' và AH=a, khoảng cách giữa hai đường thẳng BB' , CC' bằng 2a . Thể tích khối lăng trụ đã cho là
A. 3 2 a 3
B. 2 a 3
C. 2 2 a 3 3
D. 3 2 a 3 2
Cho hình lăng trụ tam giácABC.A'B'C' có đáy là tam giác đều cạnh a. Cạnh bên tạo với đáy một góc 60 ° . Gọi M là trung điểm của B'C' và I là trung điểm của đoạn A'M. Biết hình chiếu vuông góc của I trên mặt phẳng đáy (ABC) là trọng tâm cả tam giác ABC.Tính thể tích của khối lăng trụ ABC.A'B'C' theo a.
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác đều cạnh bằng a. Mặt bên ABB’A’ có diện tích bằng a 2 3 . Gọi M; N lần lượt là trung điểm của A’B; A’C . Tính tỉ số thể tích của hai khối chóp A’. AMN và A’.ABC.
A. 1 2
B. 1 3
C. 1 4
D. 1 5
Cho hình lăng trụ tam giác đều ABC.A'B'C' có AA' = a 3 , AB = a. Gọi M là trung điểm BC. Tính thể tích V của hình chóp AMB’C’.
A. V = a 3 3 4
B. V = a 3 3
C. V = a 3 4
D. V = a 3 3 2
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a, A A ' = 3 a 2 . Biết rằng hình chiếu vuông góc của điểm A' lên mặt phẳng (ABC) là trung điểm của cạnh BC. Tính thể tích V của khối lăng trụ đó theo a.
Cho hình lăng trụ ABC.A'B'C' có thể tích bằng 72 c m 3 . Gọi M là trung điểm của đoạn thẳng BB'. Tính thể tích của khối tứ diện ABCM.
A. 12 c m 3
B. 36 c m 3
C. 18 c m 3
D. 24 c m 3
Cho khối lăng trụ tam giác ABC.A'B'C' có thể tích là V. Gọi I, J lần lượt là trung điểm hai cạnh AA' và BB'. Khi đó thể tích của khối đa diện ABCIJC' bằng.