Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi tâm O, cạnh bằng a, B'D'=a 3 . Góc giữa CC’ và mặt đáy là 60 0 , trung điểm H của AO là hình chiếu vuông góc của A’ lên mặt phẳng ABCD. Tính thể tích của hình hộp
![]()



Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a 3 , BD=3a. Hình chiếu vuông góc của B trên mặt phẳng (A'B'C'D') trùng với trung điểm A’C’. Gọi α là góc giữa 2 mặt phẳng (ABCD) và (CDD'C'). Thể tích của khối hộp ABCD.A'B'C'D' bằng




Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a, BCD ^ = 120° và AA' = 7a/2. Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) trùng với giao điểm của AC và BD. Tính theo a thể tích khối hộp ABCD.A’B’C’D’.

A. V = 12 a 3
B. V = 3 a 3
C. V = 9 a 3
D. V = 6 a 3
Tính thể tích V của hình chóp S.ABC có đáy là tam giác đều có cạnh bằng a, SA vuông góc với đáy, khoảng cách từ A đến mặt phẳng (SBC) bằng 3 a/4. Thể tích của hình chóp S.ABC là:

A. V = 3 8 a 3
B. V = 2 12 a 3
C. V = 3 12 a 3
D. V = 3 24 a 3
Cho hình hộp ABCD.A'B'C'D' có đáy là hình chữ nhật, hình chiếu của A' lên đáy (ABCD) trùng với trung điểm của cạnh AD. Biết rằng AB = a, AD = 2a và thể tích hình hộp đã cho bằng 2 a 3 . Khoảng cách từ B đến mặt phẳng (A'DCB') bằng:
A. 2 a 6 B. 2 a 3
C. 3 a 3 D. a 2
Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a 2 , tam giác SAD cân tại S, mặt bên (SAD) vuông góc với mặt phẳng đáy. Biết thể tích S.ABCD bằng 4 a 3 /3. Tính khoảng cách h từ B đến mặt phẳng (SCD).

A. h = 2 3 a
B. h = 4 3 a
C. h = 8 3 a
D. h = 3 4 a
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB=BC=a 3 , S A B ^ = S C D ^ = 90 0 và khoảng cách từ điểm A đến mặt phẳng (SBC) bằng a 2 . Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC theo a.
![]()
![]()
![]()
![]()
Cho hình hộp đứng ABCD.A’B’C’D’ có đáy là hình vuông cạnh a, AC’ tạo với mặt bên (BCC’B’) một góc 30 ° . Tính thể tích của khối hộp ABCD.A’B’C’D’ bằng
![]()
![]()

![]()
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy là các tam giác đều cạnh bằng 1, A A ' = 3 . Tính khoảng cách d từ điểm A đến mặt phẳng (A’BC)



