Cho đa giác đều 20 cạnh. Chọn ngẫu nhiên 4 đỉnh của đa giác. Tính xác suất để 4 đỉnh được chọn tạo thành một hình chữ nhật nhưng không phải hình vuông.
A. 8 969
B. 12 1615
C. 1 57
D. 3 323
Cho đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm O. Chọn ngẫu nhiên 4 đỉnh của đa giác. Xác suất để 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật bằng
A. 7 216
B. 9 969
C. 3 323
D. 4 9
Cho đa giác đều 20 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 4 đỉnh của đa giác đó. Tính xác suất sao cho 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật.
B. 1728 28561
Cho một đa giác đều 20 đỉnh nội tiếp trong đường tròn O. Chọn ngẫu nhiên 4 đỉnh của đa giác đó. Tính xác suất sao cho 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật
A. 3 323
B. 4 9
C. 2 969
D. 7 216
Cho một đa giác đều 20 đỉnh nội tiếp trong đường tròn O. Chọn ngẫu nhiên 4 đỉnh của đa giác đó. Tính xác suất sao cho 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật?
A.
B.
C.
D.
Cho đa giác đều 20 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 4 đỉnh của đa giác đó. Tính xác suất được chọn là 4 đỉnh của một hình chữ nhật?
A.
B.
C.
D.
Cho một đa giác đều gồm 2n đỉnh ( n ≥ 2 , n ∈ ℕ ) . Chọn ngẫu nhiên ba đỉnh trong số 2n đỉnh của đa giác, xác suất ba đỉnh được chọn tạo thành một tam giác vuông là 1 5 . Tìm n.
A. n = 5
B. n = 4
C. n = 10
D. n = 8
Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Tính xác xuất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho.
A. 12 . 8 C 12 2
B. C 12 8 - 12 . 8 C 12 3
C. C 12 3 - 12 - 12 . 8 C 12 3
D. 12 + 12 . 8 C 12 3
Chọn ngẫu nhiên 3 đỉnh của một đa giác đều 20 đỉnh. Xác suất để chọn được 3 đỉnh lập thành một tam giác nhọn bằng
A. 6 19
B. 4 19
C. 3 19
D. 9 19