a, Chú ý EF là đường trung bình trong tam giác HAB
b, Chứng minh F là trực tâm tam giác BEC và sử dụng a)
c, Sử dụng tỉ số sinA trong tam giác vuông HAB và tỉ số tanA trong tam giác vuông BAC để tính AB, CB và AC, EC
a, Chú ý EF là đường trung bình trong tam giác HAB
b, Chứng minh F là trực tâm tam giác BEC và sử dụng a)
c, Sử dụng tỉ số sinA trong tam giác vuông HAB và tỉ số tanA trong tam giác vuông BAC để tính AB, CB và AC, EC
cho hình chữ nhật ABCD. Qua B kẻ đường thẳng vuông góc với đường chéo AC tại H. Gọi E,F,G theo thứ ự là trung điểm của AH,BH và CD
a) chứng minh tứ giác EFCG là hình bình hành.
b) Chứng minh góc BEG=90 độ
c) cho BH=h; Góc BAC=α. Tính đường chéo AC và diện tích hình chữ nhật ABCD theo h và α
Bài 3: Cho hình chữ nhật ABCD, Kẻ BH vuông góc AC. Gọi F, E, G lần lượt là trung điểm BH, AH, DC.
a)Chứng minh EFCG là hình bình hành ( đã làm được)
b)Cm: góc BEG bằng 90 độ
Cho tam giác ABC.Qua B kẻ đường thẳng vuông góc vs đường chéo AC tại H. Gọi E,F,G,H lần lượt là trung điểm của AH,BH,CD.
a) Chứng minh: tứ giác EFCG là hình bình hành.
b) Cho BH=h, góc BAC=\(\alpha\). Tính đường chéo AC theo h và \(\alpha\)
Các bạn giúp mk câu b nha
cho hình chữ nhật ABCD. qua đỉnh B, vẽ đường vuông góc với đường chéo AC tại H. gọi E,F,G thứ tự là trung điểm của các đoạn thẳng AH,BH,CD. cho biết BH=17.25cm; góc BAC= 38 độ40phút. tính diện tích hình CHỮ nhật ABCD
cho hình chữ nhật ABCD. qua đỉnh B, vẽ đường vuông góc với đường chéo AC tại H. gọi E,F,G thứ tự là trung điểm của các đoạn thẳng AH,BH,CD
cho tam giác vuông ABC vuông ở A và đường cao AH. gọi D,E là hình chíu của H lên AB và AC. từ điểm D,E kẻ các đường thẳng vuông góc với DE cắt BH và CH tại M và N. biết BH=4cm,CH=9cm
a) tính DE
b) chứng minh AD.AB=AE.AC
c)chứng minh M là trung điểm của BH, N là trung điểm của CH
d) tính diện tích tứ giác DMNE
Cho tam giác ABC vuông góc tại A, đường cao AH. Gọi D và E thứ tự là hình chiếu của H trên AB và AC. a)Tính AH biết HB = 4cm, HC =9cm. b)Chứng minh rằng: AD.AB = AE.AC c)Gọi I, K lần lượt là trung điểm của BH và CH, Chứng minh rằng tứ giác DEKI là hình thang vuông, tính diện tích của tứ giác DEKI.
1.Cho tam giác ABC vuông tại A (ab<AC) cso AH là đường cao. Biết BH=9cmHC=16cm
a. Tính AH,ACM số đo góc ABC
B. Gọi M là trung điểm của BC đường vuông góc với BC tại M cắt đường thẳng AC và BA theo thứ tự E và F. Chứng minh BH.BF=MB.AB
C. Gọi I là trung điểm của È.chứng minh IA là bán kính của đường tròn tâm I bán KÍNH IF
D. Chứng minh MA là tiếp tuyến của đường tòn tâm Ibán kính IF
2. Cho tam giấc ABC nội tiếp đường tròn (o) đườn kính BC. Vẽ dây AD của (o) vuông góc với đường kính BC tại H. Gọi M là trung điểm của cạnh AC.Từ M vẽ đường thẳng vuông góc với OC, đường thẳng này cắt OI tại N trên tia ON lấy điểm S sao cho N là trung điểm của cạnh OS
A. Chứng minh tam giác ABC vuông tại A và HA=HD
B. Chứng minh MN//SC và SC là tiếp tuyến của đường trong (O)
c. Gọi K là trung điểm của cạnh HC vẽ đương tròn đường lính AH cắt cạnh AK tại F chứng minh BH. HC= À. AK
D. T rên tia đối của tia BA lấy điểm E sao hco B là trung điểm của cạnh AE chứng minh E,H,F thẳng hàng
GIÚP MÌNH VỚI!!!
Giải bài toán hình lớp 9 Cho hình thang ABCD (AB//CD) nội tiếp (O) . Các đường chéo AC,BD cắt nhau tại E , các cạnh bên AD,BC kéo dài cắt nhau tại F. a) Chứng minh tam giác OAC= tam giác OBD b) Chứng minh tứ giác ADOE và tứ giác AOFC nội tiếp c) Gọi M,N theo thứ tự là trung điểm của BD,AC và P là hình chiếu của B lên dường thẳng CD.Chứng minh tứ giác MNCP là hình bình hành d) Cho góc DOC=120 độ , góc AOB=90 độ , tính diện tích tứ giác ABCD theo R