Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Gọi G là trọng tâm tam giác ABC. Tính theo a khoảng cách từ điểm G đến mặt phẳng (SCD)
A. a 6 9
B. a 6 3
C. 2 a 6 9
D. a 6 4
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh 2a, tâm O, SO = a. Khoảng cách từ O đến mặt phẳng (SCD) bằng
A. 2 a 2
B. 3 a
C. 5 a 5
D. 6 a 3
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh 2a, tâm O, SO=a (tham khảo hình vẽ bên). Khoảng cách từ O đến mặt phẳng (SCD) bằng
cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a. O là tâm đáy. Gọi M,N là trung điểm SA, BC.biết (MN,(ABCD))=60⁰ tính d(M,( SCD))
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng a, mặt bên SAB đều và nằm trong mặt phẳng vuông góc với (ABCD). Khoảng cách từ điểm A đến mặt phẳng (SCD) theo a là:
A. a 21 21
B. a 21 7
C. 3 a 21 7
D. a 21 3
Cho hình chóp S . A B C D có đáy ABCD là hình vuông tâm O cạnh 2a . Hình chiếu của S trên mặt đáy là trung điểm H của OA ; góc giữa hai mặt phẳng (SCD) và ( ABCD) bằng 450 . Tính khoảng cách giữa hai đường thẳng AB và SC
A. a 2
B. 3 a 2 2
C. 3 a 2 4
D. a 6
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của AB và M là trung điểm của AD. Khoảng cách từ I đến mặt phẳng (SMC) bằng
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, tam giác SAB đều, góc giữa (SCD) và (ABCD) bằng 60 0 . Gọi M là trung điểm của cạnh AB. Biết hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABCD) nằm trong hình vuông ABCD. Tính theo a khoảng cách giữa hai đường thẳng SM và AC.
Cho hình chóp tứ giác S.ABCD có đáy là hình vuông, mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Biết khoảng cách từ điểm B đến mặt phẳng (SCD) bằng 3 7 a 7 . Tính thể tích V của khối chóp S.ABCD.