Đáp án C
⇒ A C ⊥ D M
Vì S H ⊥ ( A B C D ) ⇒ D H ⊥ ( S A C )
từ H kẻ H K ⊥ S D
⇒ H K là khoảng cách cần tính.
Ta có D H H M = D C A M = 4 ⇔ D H D M = 4 5
Áp dụng hệ thức lượng trong tam giác vuông.
⇒ H K = 2 a 3
Đáp án C
⇒ A C ⊥ D M
Vì S H ⊥ ( A B C D ) ⇒ D H ⊥ ( S A C )
từ H kẻ H K ⊥ S D
⇒ H K là khoảng cách cần tính.
Ta có D H H M = D C A M = 4 ⇔ D H D M = 4 5
Áp dụng hệ thức lượng trong tam giác vuông.
⇒ H K = 2 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD; H là giao điểm của CN với DM. Biết SH vuông góc với mặt phẳng (ABCD) và SH= a 3 . Tính khoảng cách giữa hai đường thẳng DM và SC theo a.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, A D = a 3 , S A vuông góc với mặt phẳng (ABCD), góc giữa đường thẳng SD và mặt phẳng (ABCD) bằng 60 0 . Gọi M là trung điểm của cạnh AD. Khoảng cách giữa hai đường thẳng CM và SB bằng
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với A B = a , A D = a 2 . Gọi H là trung điểm của cạnh AB. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa hai mặt phẳng (SAC) và (ABCD) là 60 ° . Tính khoảng cách giữa hai đường thẳng CH và SD
A. 2 a 5 5
B. 2 a 10 5
C. a 5 5
D. 2 a 2 5
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, AB=a, BC=a 2 . Tam giác SAO cân tại S, mặt phẳng (SAD) vuông góc với mặt phẳng (ABCD) góc giữa đường thẳng SD và mặt phẳng (ABCD) bằng 60 0 . Tính khoảng cách giữa 2 đường thẳng SB và AC
Cho hình chóp S.ABCD có đáy hình chữ nhật, AB=a; AD=2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45 0 . Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật,AB=a, AD=2a; cạnh bên SA vuông góc với mặt đáy và S A = a 5 . Khoảng cách giữa hai đường thẳng AB và SD bằng
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, tam giác SAB đều, góc giữa (SCD) và (ABCD) bằng 60 0 . Gọi M là trung điểm của cạnh AB. Biết hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABCD) nằm trong hình vuông ABCD. Tính theo a khoảng cách giữa hai đường thẳng SM và AC.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M và N lần lượt là trung điểm của các cạnh AB và AD; H là giao điểm của CN và DM. Biết SH vuông góc với mặt phẳng (ABCD) và SH = a 3 . Tính thể tích khối chóp S.CDNM theo a.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh AB=a, BC=2a. Cạnh SA vuông góc với mặt phẳng đáy (ABCD), SA=2a. Khoảng cách giữa hai đường thẳng BD và SC bằng