Cho hình chóp SABCD đáy là hình vuông cạnh a, tam giác SAB đều và (SAB) vuông góc với (ABCD). Tính khoảng cách từ a)A đến (SCD) b)C đến (SAB) c)C đến (SAD)
Cho hình chóp SABCD đáy là hình vuông tâm O cạnh a. SA=a căn 3. SA vuông góc với đáy. Tính góc a)(SBD) và (ABCD) b)(SBD) và (SAB) c)(SBC) và (ABCD) d)(SCD) và (ABCD)
cho hình chóp SABCD đáy là hình vuông cạnh 2a. (SAB) vuông góc (ABCD). Tam giác SAB là tam giác cân tại S. Tính thể tích SABCD biết a)Góc giữa SA và đáy là alpha biết tan alpha=2 b)Góc giữa SC và đáy là alpha biết tan alpha= căn 5 c)Góc giữa (SCD) và (ABCD) là alpha biết tan alpha=3
cho hình chóp SABCD đáy là hình vuông cạnh 2a. (SAB) vuông góc (ABCD). Tam giác SAB là tam giác cân tại S. Tính thể tích SABCD biết a)Góc giữa SA và đáy là alpha biết tan alpha=2 b)Góc giữa SC và đáy là alpha biết tan alpha= căn 5 c)Góc giữa (SCD) và (ABCD) là alpha biết tan alpha=3
Chóp SABCD , ABCD là hình chữ nhật tâm O SA=5a ; AB=2a ; AD=a căn 3 ; SA vuông góc với đáy a) Cm BC vuông góc (SAB) ; CD vuông góc (SAD ) ; (SCD) vuông góc (SAD) b) Tính góc (SC:SAD) ; (SC:SAD) ; (SC:ABCD) c) Tính khoảng cách từ A đến (SBC) và d(A,(SCD)) d)Tính góc giữa 2 mp (SBD) và (ABCD) ; (SCD) và (ABCD)
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Tam giác SAB là tam giác đều, mặt phẳng SAB vuông góc với mặt phẳng ABCD. Gọi b là góc giữa mặt phẳng SAC và mặt phẳng SCD. Tính Cos b
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt đáy (ABCD). Tính khoảng cách từ B đến (SCD).
A. 1
B. 21 3
C. 2
D. 21 7
Cho hình chóp SABCD có ABCD là hình thang (AB là đường lớn). M là điểm thuộc miền trong của tam giác SCD. Tìm giao tuyến của a) (SAM) và (ABCO) b) (SAM) và(SBD) c) (SAB) và (SCD) d) (SBC) và(SAD)
Hình chóp SABCD có ABCD là hình vuông SA vuông góc ABCD SA = a√6/3
a,Cm BD vuông góc SC
b, cm SAB vuông góc SBC
c, góc giữa sc và abcd
d, khoảng cách từ a đến scd