Đáp án B
Dễ chứng minh
⇒ V c h o p = 1 3 S O . S A B C D = a 3 3 3
Đáp án B
Dễ chứng minh
⇒ V c h o p = 1 3 S O . S A B C D = a 3 3 3
Cho hình chóp tam giác đều S.ABCD, cạnh đáy bằng a. Mặt bên tạo với mặt đáy một góc 60. Tính thể tích V của hình chóp S.ABCD. A)a³✓3/2 B)a³✓3/6 C)a³✓3/12 D)a³✓3/24
Cho hình chóp S.ABCD có đáy là hình chữ nhật tâm O và AB = a, BC = a \(\sqrt{3}\)
(SAD) ⊥ (ABCD), SD tạo với đáy một góc 60◦ và ∆SAO cân tại S. Tính thể tích khối chóp S.ABCD.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=2a, BC=a. Các cạnh bên của hình chóp cùng bằng a 2 . Tính góc giữa hai đường thẳng AB và SC.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. AB=a, BC=2a cạnh bên SA vuông góc với đáy và SA=a 2 Tính thể tích khối chóp S.ABCD
A. 2 3 a 3 3
B. 2 2 a 3 3
C. 2 2 a 3
D. 2 a 3
Cho hình chóp S.ABCD có đáy là hình chữ nhật, SA vuông góc với mặt đáy (ABCD), AB = a, AD = 2a. Góc giữa cạnh bên SB và mặt phẳng (ABCD) bằng 45 ° . Thể tích hình chóp S.ABCD bằng
A. 2 a 3 3
B. a 3 3
C. 6 a 3 18
D. 2 2 a 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy (ABCD) và SA =a 3 . Khi đó, thể tích của khối chóp bằng:
A. a 3 3 3
B. a 3 3 4
C. a 3 3
D. a 3 3 6
Cho hình chóp S.ABCD đáy là hình chữ nhật tâm O; AB=a, AD=a 3 , SA=3a, SO vuông góc với mặt đáy (ABCD). Thể tích khối chop S.ABC bằng:
Cho hình chóp S.ABCD có đáy là hình thang vuông ở A và D, cạnh đáy AB = a, cạnh đáy CD = 2a, AD = a. Hình chiếu vuông góc của S lên đáy trùng với trung điểm CD. Biết rằng diện tích mặt bên (SBC) bằng 3 a 2 2 . Thể tích của hình chóp S.ABCD bằng:
A. a 3 B. 3 a 3 2
C. 3 a 3 D. 3 2 a 3
Cho hình chóp S.ABCD có đáy là hình chữ nhật, hình chiếu của S lên đáy trùng với trung điểm của AB. Tính thể tích V của hình chóp đã cho, biết rằng AB = a, BC = a 6 , khoảng cách từ A đến mặt (SCD) bằng 6 a/3
A. V = 6 6 a 3
B. V = 2 4 a 3
C. V = 2 2 a 3
D. V = 2 6 a 3