Cho hình chóp SABCD I,J lần lượt là trung điểm của SA,SC a, CMR : IJ SONG SONG (ABCD) b, Xác địng thiết diện của mp(alpha) với hình chóp, biết (alpha) đi qua I và song song (ABCD)
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng đáy vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành, d cắt BC tại E. Gọi C’ là một điểm nằm trên cạnh SC.
a) Tìm giao điểm M của CD và mp(C’AE).
b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng (C’AE).
cho hình chóp s.abcd có đáy là hình bình hành. Gọi M,N lần lượt là trung điểm của các cạng SA,SC, và G là trọng tâm của △ABC
a) tìm giao tuyến của hai mặt phẳng (SAC) và (SBD)
b) tìm giao điểm BC và mặt phẳng (GMN)
c) xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (GMN)
Câu 2: Cho hình chóp S. ABCD có đáy ABCD là hình bình hành tâm O, M là trung điểm SD Dựng thiết diện của mặt phẳng qua MO, song song với SA và hình chóp
Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành tâm O. Gọi M là trung điềm SB và N là điểm trên cạnh SA sao cho SN=2SA.
a) Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD)
b) Tìm giao điểm H của AD với mặt phẳng (OMN), giao điểm K của BC với mặt phẳng (OMN)
c) Tìm thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (OMN).
Cho hình chóp S. ABCD có đáy là hình bình hành tâm O có AC= a và BD= b. Tam giác SBD là tam giác đều. Một mặt phẳng (α) di động song song với mặt phẳng (SBD) và đi qua điểm I trên đoạn OA và AI = x ( 0< x< a) . Xác định thiết diện của hình chóp cắt bởi mặt phẳng (α) và tính dienj tích thiết diện theo a; b và x?
A. b 2 x 2 2 a 2
B. b 2 x 2 3 2 a 2
C. b 2 x 2 3 a 2
D. Đáp án khác
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là một điểm trên cạnh SC và (a) là mặt phẳng chứa AM và song song với BD. a. Tìm giao tuyến của hai mặt phăng (SAC) và (SBD) ? b. Tìm các giao điểm E, F của mặt phẳng (a) lần lượt với các cạnh SB, SD.
Cho hình chóp S.ABCD, có đáy là hình bình hành. Gọi C' là trung điểm của SC và M là một điểm di động trên cạnh SA. Mặt phẳng (P) di động luôn đi qua C'M và song song với BC.
a) Xác định thiết diện (P) cắt hình chóp S.ABCD. Xác định vị trí điểm M để thiết diện là hình bình hành.
b) Khi M di động trên cạnh SA, thì giao điểm của hai cạnh đối của thiết diện chạy trên đường nào?
Hình chóp S.ABCD có đáy là hình vuông ABCD tâm O và có cạnh SA vuông góc với mặt phẳng (ABCD). Giả sử (α) là mặt phẳng đi qua A và vuông góc với cạnh SC, (α) cắt SC tại I.
a) Xác định giao điểm K của SO với mặt phẳng (α).
b) Chứng minh mặt phẳng (SBD) vuông góc với mặt phẳng (SAC) và BD // (α).
c) Xác định giao tuyến d của mặt phẳng (SBD) và mặt phẳng (α). Tìm thiết diện cắt hình chóp S.ABCD bởi mặt phẳng (α).
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD, O là giao điểm hai đường chéo, AC = a, BD = b, tam giác SBD đều. Gọi I là điểm di động trên đoạn AC với AI = x (0 < 0 < a). Lấy là mặt phẳng đi qua I và song song với mặt phẳng (SBD).
a) Xác định thiết diện của mặt phẳng với hình chóp S.ABCD.
b) Tìm diện tích S của thiết diện ở câu a) theo a, b, x. Tìm x để S lớn nhất.