Cho hình chóp S.ABCD có đáy là hình bình hành. Biết rằng, thể tích của khối chóp S.ABCD bằng 2 a 3 và diện tích tam giác SAB bằng a 2 . Tính khoảng cách h giữa hai đường thẳng SA và CD.
Cho khối chóp S.ABCD có thể tích bằng 2 a 3 và đáy ABCD là hình bình hành. Biết diện tích tam giác SAB bằng a 2 . Tính khoảng cách giữa hai đường thẳng SA và CD.
Cho khối chóp S.ABCD có thể tích bằng a 3 3 . Mặt bên SAB là tam giác đều cạnh a, thuộc mặt phẳng vuông góc với đáy, biết đáy ABCD là hình bình hành. Tính theo a khoảng cách giữa hai đường thẳng SA và CD.
A. 2 a 3
B. a 3
C. a
D. 6 a
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với đáy. Biết rằng khoảng cách từ điểm A đến mặt phẳng (SBC) bằng a. Xét góc α thay đổi là số đo của góc giữa đường thẳng SB và mặt phẳng đáy. Tính sao cho thể tích của hình chóp S.ABCD đạt giá trị nhỏ nhất.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Biết thể tích của khối chóp S.ABCD theo a là V = . Góc α giữa đường thẳng SD và mặt phẳng (SAB) là bao nhiêu độ ?
Cho hình chóp tứ giác đều S.ABCD có thể tích bằng 4 3 a 3 3 và diện tích xung quanh bằng 8 a 2 .Tính góc α giữa mặt bên của hình chóp với mặt đáy, biết α là một số nguyên.
A. 55°
B. 30°
C. 45°
D. 60°
Cho hình chóp đều S.ABCD có cạnh đáy bằng 2a, khoảng cách giữa hai đường thẳng SA và CD bằng a 3 . Tính thể tích khối chóp S.ABCD.
A. 3 a 3 3
B. 4 3 a 3
C. 3 a 3
D. 4 3 a 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi K,M lần lượt là trung điểm của các đoạn thẳng SA, SB, α là mặt phẳng qua K song song với AC và AM. Mặt phẳng α chia khối chóp S.ABCD thành hai khối đa diện. Gọi V1 là thể tích của khối đa diện chứa đỉnh S và V2 là thể tích khối đa diện còn lại. Tính tỉ số V 1 V 2 .
Cho khối chóp S.ABCD có đáy là hình vuông, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Mặt cầu ngoại tiếp khối chóp S.ABCD có diện tích 84 π ( cm 2 ) . Khoảng cách giữa hai đường thẳng SA và BD.