Đáp án A
Ta có tam giác ACD vuông cân tại C và C A = C D = 2 a 2
⇒ S ∆ A C D = 4 a 2 . Gọi H là trung điểm của AB
Vì tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy
⇒ S H ⊥ ( A B C D ) ; S H = a 3 .
Vậy S S . A C D = 4 a 3 3 3 .
Đáp án A
Ta có tam giác ACD vuông cân tại C và C A = C D = 2 a 2
⇒ S ∆ A C D = 4 a 2 . Gọi H là trung điểm của AB
Vì tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy
⇒ S H ⊥ ( A B C D ) ; S H = a 3 .
Vậy S S . A C D = 4 a 3 3 3 .
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB=BC= 1 2 AD=a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ACD.
A. V = a 3 3
B. V = a 3 2
C. V = a 3 2 6
D. V = a 3 3 6
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB=BC= 1 2 AD=a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích của khối chóp S.ACD được:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a 3 , mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích của khối chóp S.ABCD là:
A. 9 3 a 3 2
B. a 3 2
C. 3 a 3 3
D. 3 a 3 2
Cho hình chóp S.ABCD có đáy là hình vuông, gọi M là trung điểm của AB. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết SD=a 3 SC tạo với mặt phẳng đáy (ABCD) một góc 60 o Thể tích khối chóp S.ABCD theo a là
A. 4 a 3 3
B. 3 a 3 10
C . 4 a 3 15 5
D . 2 a 3 15 3
Cho hình chóp S.ABCD có đáy là hình vuông, gọi M là trung điểm của AB. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết SD = a 3 , SC tạo với mặt phẳng đáy (ABCD) một góc 60°. Thể tích khối chóp S.ABCD theo a là
A. 4 a 3 3
B. 3 a 3 10
C. 4 a 3 15 5
D. 2 a 3 15 3
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên SC=a 15 . Tam giác SAD là tam giác đều cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm AD, khoảng cách từ B đến mặt phẳng (SHC) bằng 2a 6 . Tính thể tích V của khối chóp S.ABCD?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông đường chéo AC = 2 2 a. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với (ABCD). Thể tích của khối chóp S.ABCD là:
A. a 3
B. 4 3 a 3 3
C. 3 a 3 6
D. 2 3 a 3 3
Cho hình chóp S.ABCD có đáy là hình vuông, SA vuông góc với đáy, SA = AC. Mặt phẳng qua A vuông góc với SC cắt SB, SC, SD lần lượt tại B', C', D'. Tỉ số giữa thể tích hình chóp S.A'B'C'D' và thể tích hình chóp S.ABCD là:
A. 1/6 B. 1/4
C. 1/3 D. 1/2
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính theo a thể tích V của khối chóp S.ABCD.
A. V = a 3 15 6
B. V = a 3
C. V = 2 a 3
D. V = a 3 3 6