Cho khối chóp S.ABCD có thể tích bằng 1 và đáy ABCD là hình bình hành. Trên cạnh SC lấy điểm E sao cho SE = 2EC. Tính thể tích V của khối tứ diện SEBD.
A. V = 1 6
B. V = 1 3
C. V = 1 12
D. V = 2 3
Cho hình chóp tứ giác S.ABCD có thể tích bằng V. Lấy điểm A' trên cạnh SA sao cho SA' = SA/3. Mặt phẳng qua A' và song song với đáy của hình chóp cắt cạnh SB, SC, SD lần lượt tại B', C', D'. Thể tích hình chóp S.A'B'C'D' bằng:
A. V/3 B. V/9
C. V/27 D. V/81.
Cho hình chóp tứ giác S . A B C D đáy là hình bình hành có thể tích bằng V . Lấy điểm B , , D , lần lượt là trung điểm của các cạnh S B và S D . Mặt phẳng A B , D , cắt cạnh S C tại C , . Khi đó thể tích khối chóp S . A B , C , D , bằng
Cho hình chóp tứ giác S. ABCD đáy là hình bình hành có thể tích bằng V. Lấy điểm B', D' lần lượt là trung điểm của cạnh SB và SD. Mặt phẳng qua (AB'D') cắt cạnh SC tại C'. Khi đó thể tích khối chóp S. AB'C'D' bằng:
A. V 3
B. 2 V 3
C. V 3 3
D. V 6
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích V. Gọi E là điểm trên cạnh SC sao cho EC = 2ES. Gọi α là mặt phẳng chứa đường thẳng AE và song song với đường thẳng BD, α cắt hai cạnh SB, SD lần lượt tại hai điểm M, N. Tính theo V thể tích khối chóp S.AMEN.
A. V 6
B. V 27
C. V 9
D. V 12
Cho hình chóp tứ giác đều S.ABCD có thể tích V, có O là tâm của đáy. Lấy M là trung điểm của cạnh bên SC. Thể tích khối tứ diện ABMO bằng:
A. V 4
B. V 2
C. V 16
D. V 8
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = SB, SC =SD, ( S A B ) ⊥ ( S C D ) và tổng diện tích hai tam giác SAB và SCD bằng 7 a 2 10 Tính thể tích V của khối chóp S.ABCD?
A. V = a 3 5
B. V = 4 a 3 15
C. V = 4 a 3 25
D. V = 12 a 3 25
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi K là trung điểm SC. Mặt phẳng AK cắt các cạnh SB, SD lần lượt tại M và N. Gọi V 1 , V theo thứ tự là thể tích khối tứ diện S.AMKN và hình chóp S.ABCD. Giá trị nhỏ nhất của tỷ số V 1 V bằng:
A. 1 2
B. 2 3
C. 1 3
D. 3 8
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45° và SC = 2a. Tính thể tích V của khối chóp S.ABCD.