Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G là trọng tâm tam giác SAB, E là trung điểm của CB, I là giao điểm của AE và BD. Khi đó IG sẽ không song song với mặt phẳng nào dưới đây?
A. (SAC).
B. (SBC).
C. (SCD).
D. (SAD).
Cho hình chóp S.ABCD có đáy là hình thang. A D / / B C , A D = 2 B C = 2 a . Gọi E, F lần lượt là trọng tâm các tam giác SAD và SBC. Gọi d là giao tuyến của hai mặt phẳng (EBC) và (FAD); M,N lần lượt là giao điểm của d với các mặt phẳng (SAB), (SCD). Độ dài đoạn thẳng MN bằng
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều, SC = SD = a 3 . Tính cosin của góc giữa hai mặt phẳng (SAD) và (SBC). Gọi I là trung điểm của AB; J là trung điểm của CD. Gọi H là hình chiếu của S trên (ABCD) . Qua H kẻ đường thẳng song song với AB, đường thẳng này cắt DA và CB kéo dài tại M, N . Các nhận định sau đây.
(1) Tam giác SIJ là tam giác có S I J ^ tù.
(2) sin S I H ^ = 6 3
(3) M S N ^ là góc giữa hai mặt phẳng (SBC) và (SAD).
(4) cos M S N ^ = 1 3
Chọn đáp án đúng:
A. (1), (2) đúng , (3) sai
B. (1), (2), (3) đúng (4) sai
C. (3), (4) đúng (1) sai
D. (1), (2), (3), (4) đúng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SB và G là trọng tâm tam giác SCD. Mặt phẳng (CMG) cắt cạnh AD tại điểm E. Tỉ số E D E A bằng
Cho hình chóp S.ABCD có đáy ABCD là hình thang ( AB//CD). Gọi I, J lần lượt là trung điểm của các cạnh AD, BC và G là trọng tâm tam giác SAB. Biết thiết diện của hình chóp cắt bởi mặt phẳng (IJG) là hình bình hành. Hỏi khẳng định nào sau đây đúng?
Cho hình chóp S . A B C D đáy A B C D là hình bình hành. Giao tuyến của hai mặt phẳng ( S A D ) và ( S B C ) là đường thẳng song song với đường thẳng nào sau đây?
A. A D
B. B D
C. D C
D. A C
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi M, N, P, Q lần lượt là trọng tâm các tam giác SAB, SBC, SCD, SDA. Biết thể tích khối chóp S.MNPQ là V, khi đó thể tích của khối chóp S.ABCD là
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G là trọng tâm của tam giác ABC và M là trung điểm của SC. Gọi K là giao điểm của SD với mặt phẳng (AGM). Tính tỷ số K S K D
A. 1 2
B. 1 3
C. 2
D. 3
Cho hình chóp S.ABCD có đáy là hình vuông, mặt bên (SAB) là một tam giác đều nằm trong mặt phẳng vuông góc với mặt đáy (ABCD) và có diện tích bằng 27 3 4 (đvdt). Một mặt phẳng đi qua trọng tâm tam giác SAB và song song với mặt đáy (ABCD) chia khối chóp S.ABCD thành hai phần, tính thể tích V của phần chứa điểm S?
A. V = 24
B. V = 8
C. V = 12
D. V = 36