Đáp án C
Ta có: SA = SB = SC =a
⇒ ∆ S B D đ ề u
Gọi O là tâm hình thoi ABCD, I là tâm tam giác đều SBD cạnh a.
Vì AS = AB = AD
Dễ dàng tính được
Xét ∆ A I O vuông tại I có:
⇒ V A . S B D = 1 3 . A I . S S B D = a 2 3 12 (đvtt)
Đáp án C
Ta có: SA = SB = SC =a
⇒ ∆ S B D đ ề u
Gọi O là tâm hình thoi ABCD, I là tâm tam giác đều SBD cạnh a.
Vì AS = AB = AD
Dễ dàng tính được
Xét ∆ A I O vuông tại I có:
⇒ V A . S B D = 1 3 . A I . S S B D = a 2 3 12 (đvtt)
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, A B C ^ = 120 ° . Cạnh bên S A = 3 a và SA vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.BCD.
A. V = a 3 2
B. V = a 3 4
C. V = 3 a 3 4
D. V = 3 a 3 2
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA = a 2 và vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.ABC
A. V = 2 6 a 3
B. V = 2 2 3 a 3
C. V = 2 a 3
D. V = 2 3 a 3
Cho hình chóp S.ABCD có đáy là hình thoi cạnh a và SAB = SAD = BAD = 60 o , cạnh bên SA = a. Thể tích khối chóp tính theo a là
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Hình chiếu của S trên mặt phẳng (ABCD) trùng với trung điểm của cạnh AB. Cạnh bên S A = 3 a 2 . Tính thể tích khối chóp S.ABCD theo a.
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, D ^ = 60° và SA vuông góc với (ABCD). Biết thể tích của khối chóp S.ABCD bằng a 3 2 . Tính khoảng cách k từ A đến mặt phẳng (SBC).
A. k = 3 a 5
B. k = a 3 5
C. k = 2 a 5
C. k = 2 a 5
Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật với AB = a, BC = a 3 . Cạnh bên SA vuông góc với đáy và đường thẳng SC tạo với mặt phẳng (SAB) một góc 30 độ. Tính thể tích V của khối chóp S.ABCD theo a.
A. V = 2 6 a 3 3
B. V = 2 a 3 3
C. V = 3 a 3
D. V = 3 a 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. AB=a, BC=2a cạnh bên SA vuông góc với đáy và SA=a 2 Tính thể tích khối chóp S.ABCD
A. 2 3 a 3 3
B. 2 2 a 3 3
C. 2 2 a 3
D. 2 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, B A D ^ = 60 ° và SA vuông góc với mặt phẳng (ABCD). Góc giữa 2 mặt phẳng (SBD) và (ABCD) bằng 450. Gọi M là điểm đối xứng của C qua B và N là trung điểm của SC. Mặt phẳng (MND) chia khối chóp S.ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích V1, khối đa diện còn lại có thể tích V2 (tham khảo hình vẽ bên). Tính tỉ số V 1 V 2
A. V 1 V 2 = 12 7
B. V 1 V 2 = 5 3
C. V 1 V 2 = 1 5
D. V 1 V 2 = 7 5
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, ABC = 60 ° cạnh bên SA = a 2 và SA vuông góc với ABCD. Tính góc giữa SB và (SAC).
A. 90 °
B. 30 °
C. 45 °
D. 60 °