Cho hình chóp S.ABCD có ABC là tam giác đều cạnh a. Hai mặt phẳng (SAC),(SAB) cùng vuông góc với đáy và góc tạo bởi SC và đáy bằng 600. Tính khoảng cách h từ A tới mặt phẳng (SBC)
Hình chóp S.ABC có SA ⊥ (ABC), tam giác ABc đều cạnh a và góc giữa mặt phẳng (SBC) với mặt phẳng (ABC) bằng 60 ° . Tính khoảng cách h từ A tới mặt phẳng (SBC).
A. h = a 2 3
B. h = a 3 4
C. h = a 2
D. h = 3 a 4
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC) và tam giác ABC cân tại A. Cạnh bên SB lần lượt tạo với mặt phẳng đáy, mặt phẳng trung trực của BC các góc bằng 30° và 45°, khoảng cách từ S đến cạnh BC bằng a. Tính thể tích khối chóp S.ABC
A. V = a 3
B. V = a 3 2
C. V = a 3 3
D. V = a 3 6
Cho hình chóp S . A B C D có đáy A B C D là hình vuông cạnh a , cạnh bên S A vuông góc với mặt phẳng đáy, góc giữa mặt phẳng S B C và mặt phẳng đáy bằng 60 0 . Khoảng cách từ D đến mặt phẳng S B C bằng
A. a 6 4
B. a 2
C. a 3 2
D. a 15 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với đáy. Biết rằng khoảng cách từ điểm A đến mặt phẳng (SBC) bằng a. Xét góc α thay đổi là số đo của góc giữa đường thẳng SB và mặt phẳng đáy. Tính sao cho thể tích của hình chóp S.ABCD đạt giá trị nhỏ nhất.
Hình chóp SABC có SA vuông góc với mặt phẳng (ABC); tam giác ABC đều cạnh 2a; góc giữa (SBC) và (ABC) bằng 45 ° . Tính khoảng cách h từ A tới mặt phẳng (SBC).
A. h = a 2 3
B. h = a 3 2
C. h = a 3 4
D. h = a 2
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a , cạnh bên SA vuông góc với đáy a. Biết góc tạo bởi hai mặt phẳng (SBC) và (ABC) bằng 60 0 , tính thể tích của khối chóp .
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, cạnh bên SA vuông góc với mặt phẳng đáy, góc tạo bởi hai mặt phẳng (ABC) và (SBC) bằng 60 0 (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng AB và SC bằng :
Cho hình chóp S.ABC có đáy là ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy. Biết hình chóp S.ABC có thể tích bằng a 3 . Tính khoảng cách d từ điểm A đến mặt phẳng (SBC).