Đáp án C
Gọi H là chân đường vuông góc hạ từ S xuống mặt phẳng đáy.
Kẻ HM, HN, HP lần lượt vuông góc với các cạnh AB, BC, CA.
Khi đó ta có SM, SN, SP lần lượt vuông góc với AB, BC, CA.
Do đó:
Khi đó: H M = H N = H P = H S tan α = H S 3
Suy ra H là tâm đường tròn nội tiếp tam giác ABC bán kính HM.
Áp dụng công thức Hê-rông ta có: S ∆ A B C = 24 6 (đvdt)
⇒ H M = S ∆ A B C p = 4 6 3
⇒ H S = 3 H M = 4 6
⇒ V S . A B C = 1 3 H S . S ∆ A B C = 192 (đvtt).