Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA = 2a và SA vuông góc với mặt phẳng (ABC). Gọi M và N lần lượt là hình chiếu vuông góc của A trên các đường thẳng SB và SC. Thể tích V của khối chóp A.BCNM bằng
A. V = 3 a 3 3 50
B. V = 9 a 3 3 50
C. V = 8 a 3 3 75
D. V = 8 a 3 3 25
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA=2a và SA vuông góc với mặt phẳng (ABC). Gọi M và N lần lượt là hình chiếu vuông góc của A trên các đường thẳng SB và SC. Thể tích V của khối chóp A.BCNM bằng
Cho hình chóp S . A B C có S A = a ; A B = a 3 ; B A C ^ = 150 o và S A vuông góc với mặt phẳng đáy. Gọi M , N lần lượt là hình chiếu vuông góc của A trên SB và SC. Thể tích khối cầu ngoại tiếp hình chóp A . B C M N bằng.
A. 4 7 π a 3 3
B. 44 11 π a 3 3
C. 28 7 π a 3 3
D. 20 5 π a 3 3
Cho hình chóp S.ABC có AC = a, AB = a 3 , B A C ^ = 150 ∘ và SA vuông góc với mặt phẳng đáy. Gọi M,N lần lượt là hình chiếu vuông góc của A trên SB và SC. Thế tích khối cầu ngoại tiếp hình chóp A.BCNM bằng
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại đỉnh B, AB = a, SA = 2a và SA vuông góc với mặt phẳng đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính thể tích khối tứ diện S.AHK.
A. V = 4 a 3 15
B. V = 8 a 3 45
C. V = 8 a 3 15
D. V = 4 a 3 5
Cho hình chóp tam giác S. ABC có đáy ABC là tam giác đều cạnh a, SA=a và SA vuông góc với mặt phẳng (ABC). Gọi M và N lần lượt là hình chiếu vuông góc của A trên các đường thẳng SB và SC. Thể tích V của khối chóp A. BCNM bằng:
A. a 3 3 12
B. a 3 3 48
C. a 3 3 24
D. a 3 3 16
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA = 2a và SA ⊥ (ABC). Gọi M và N lần lượt là hình chiếu vuông góc của A trên các đường thẳng SB và SC. Tính 50 V 3 a 3 , với V là thể tích khối chóp A.BCMN
A. 10
B. 12
C. 9
D. 11
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, A B = a , B C = 2 a .Cạnh bên SA vuông góc với đáy và SA=a. Gọi M, N lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính thể tích V của khối chóp S.AMN.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, BC=a. Cạnh bên SA vuông góc với mặt phẳng (ABC). Gọi H, K lần lượt là hình chiếu vuông góc của A lên SB và SC. Tính thể tích của khối cầu tạo bởi mặt cầu ngoại tiếp hình chóp A.HKB.