Đáp án A
Do S A ⊥ ( A B C ) nên B C ⊥ S A M là trung điểm BC nên ta có B C ⊥ A M
⇒ B C ⊥ ( S A M ) độ dài cạnh hình lập phương là 3cm
Đáp án A
Do S A ⊥ ( A B C ) nên B C ⊥ S A M là trung điểm BC nên ta có B C ⊥ A M
⇒ B C ⊥ ( S A M ) độ dài cạnh hình lập phương là 3cm
Cho hình chóp SABC có đáy ABC là tam giác cân tại B, cạnh bên SA vuông góc với đáy, M là trung điểm BC, J là hình chiếu của A lên BC. Khẳng định nào sau đây đúng ?
A. BC ⊥ (SAC)
B.BC ⊥ (SAM)
C.BC ⊥ (SAJ)
D. BC ⊥ (SAB)
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A, cạnh bên SA vuông góc với đáy, M là trung điểm của BC, J là trung điểm của BM. Mệnh đề nào sau đây đúng?
A. BC ⊥ (SAC).
B. BC ⊥ (SAJ).
C. BC ⊥ (SAM).
D. BC ⊥ (SAB).
Hình chóp A'.BC'D có đáy ABC là tam giác vuông tại a, SA vuông góc với mặt phẳng (ABC), SA = a, AB = b, AC = c. Tính bán kính R của mặt cầu đi qua các điểm A, B, C và S ?
A. R = 2 ( a + b + c ) 3
B. R = 2 a 2 + b 2 + c 2
C. R = 1 2 a 2 + b 2 + c 2
D. R = a 2 + b 2 + c 2
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, đỉnh S cách đều các điểm A,B,C. Biết AC = 2a,BC = a; góc giữa đường thẳng SB và mặt đáy (ABC) bằng 60 o . Tính theo a thể tích V của khối chóp S.ABC?
A. V = a 6 3 4 .
B. V = a 6 3 6 .
C. V = a 3 2 .
D. V = a 6 3 12 .
Cho hình chóp S.ABCD có đáy là hình thang cân, S A ⊥ A B C D , A D = 2 B C = 2 A B . Trong tất cả các tam giác mà 3 đỉnh lấy từ 5 điểm S, A, B, C, D có bao nhiêu tam giác vuông?
A. 3
B. 6
C. 5
D. 7
Cho hình chóp SABC có đáy ABC là tam giác vuông tại A, cạnh AB = 2, A B C ^ = 60 ° . Hình chiếu vuông góc của S trên mặt phẳng đáy là trung điểm M của BC, góc giữa SA và mặt đáy bằng 450. Thể tích của khối chóp SABC bằng
Cho hình chóp S. ABC có đáy ABC là tam giác đều cạnh bằng a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy, SC hợp với đáy một góc 300, M là trung điểm của AC. Tính thể tích khối chóp S. BCM.
A. 3 a 3 48
B. 3 a 3 16
C. 3 a 3 96
D. 3 a 3 24
Cho hình chóp SABC có đáy ABC là tam giác vuông tại A, cạnh AB=2, A B C ⏜ = 60 0 . Hình chiếu vuông góc của S trên mặt phẳng đáy là trung điểm M của BC, góc giữa SA và mặt đáy bằng 45 0 . Tính thể tích V của khối chóp SABC.
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Biết SA ⊥ (ABCD), AB=BC=a, SA=a 2 , AD=2a. Gọi E là trung điểm của AD. Tính bán kính mặt cầu đi qua các điểm S, A, B, C, E.