Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B. AB=1, B C = 2 , mặt bên SAC là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi α là số đo của góc giữa hai mặt phẳng ( S A B ) , ( A B C ) . Khi đó tan α bằng
Xét khối chóp S.ABC có đáy ABC là tam giác vuông cân tại A, SA vuông góc với đáy, khoảng cách từ A đến mặt phẳng (SBC) bằng 3. Gọi α là góc giữa hai mặt phẳng (SBC) và (ABC), tính cos α khi thể tích khối chóp S.ABC nhỏ nhất.
Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, A B C ^ = 60 0 , mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi α là số đo góc giữa đường thẳng SB và mặt phẳng (SCD). Khi đó cos α bằng
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, A B = 1 , B C = 3 , mặt bên SAC là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách từ điểm C đến mặt phẳng (SAB) bằng
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = a, B C = 2 a ; cạnh bên SA vuông góc với mặt đáy. Biết rằng số đo của góc giữa hai mặt phẳng (ABC) và (ABC) bằng 60 0 . Khoảng cách từ trọng tâm G của tam giác SAB đến mặt phẳng (SAC) bằng
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc vói đáy. Gọi M là trung điểm của SC và α là số đo của góc giữa hai đường thẳng AC, BM. Khi đó cos α bằng
Cho hình chóp S.ABC có đáy là tam giác vuông tại A, ABC = 30 o . Mặt bên SBC là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách từ C đến mặt phẳng (SAB).
A. 39 a 13
B. 39 a 3
C. 26 a 13
D. 39 a 26
Xét khối chóp S.ABC có đáy là tam giác vuông cân tại A, SA vuông góc với đáy, khoảng cách từ A đến mặt phẳng (SBC) bằng 3. Gọi α là góc giữa hai mặt phẳng (SBC) và (ABC), tính cos α khi thể tích khối chóp S.ABC nhỏ nhất.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, A B = 1 , B C = 3 , mặt bên SAC là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách giữa hai đường thẳng SA, BC bằng