Cho hình chóp S.ABC có bốn đỉnh đều nằm trên một mặt cầu, SA = a, SB = b, SC = c và ba cạnh SA, SB, SC đôi một vuông góc. Tính diện tích mặt cầu và thể tích khối cầu được tạo nên bởi mặt cầu đó.
Cho hình chóp S.ABC có SA,SB,SC đôi một vuông góc và SA=SB=SC=a. Tính bán kính r của mặt cầu nội tiếp hình chóp S.ABC (mặt cầu nội tiếp hình chóp là mặt cầu tiếp xúc với tất cả các mặt của hình chóp và có tâm nằm trong hình chóp).
Cho hình chóp S.ABC có SA=a, SB=b, SC=c. Một mặt phẳng (α) đi qua trọng tâm của tam giác ABC, cắt các cạnh SA, SB, SC lần lượt tại A’, B’, C’. Tìm giá trị nhỏ nhất của 1 S A ' 2 + 1 S B ' 2 + 1 S C ' 2
A. 3 a 2 + b 2 + c 2 .
B. 2 a 2 + b 2 + c 2 .
C. 2 a 2 + b 2 + c 2 .
D. 9 a 2 + b 2 + c 2 .
Cho hình chóp S.ABC có S A ⊥ ( A B C ) , AC = b, AB = c, . Gọi B', C' lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính bán kính mặt cầu ngoại tiếp hình chóp A.BCC'B' theo b, c, α .
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi B 1 , C 1 lần lượt là hình chiếu của A trên SB, SC. Tính theo a bán kính R của mặt cầu đi qua năm điểm A,B, C, B 1 , C 1 .
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi B 1 , C 1 lần lượt là hình chiếu của A trên SB, SC. Tính theo a bán kính R của mặt cầu đi qua năm điểm A, B, C, B 1 , C 1
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi B 1 , C 1 lần lượt là hình chiếu của A trên SB, SC. Tính theo a bán kính R của mặt cầu đi qua năm điểm A , B , C , B 1 , C 1 .
Cho hình chóp S.ABCD có SA ^ (ABC), AB = 1, AC = 2 và B A C ^ = 60 ∘ .
Gọi M, N lần lượt là hình chiếu của A trên SB, SC. Tính bán kính R của
mặt cầu đi qua các điểm A, B, C, M, N.
Cho hình chóp S.ABC có S A ⊥ ( A B C ) , AC=b, AB=c, B A C ^ = α . Gọi B', C' lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính bán kính mặt cầu ngoại tiếp hình chóp A.BCC'B' theo b, c, α .