Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Biết SA vuông góc với đáy và SA=a. Tính khoảng cách từ điểm A đến mp(SBD).
A. 2 a 3
B. a 3
C. a 2 3
D. a 2 6
Cho hình chóp S. ABCD có đáy là hình bình hành, cạnh bên SA vuông góc với đáy. Biết khoảng cách từ A đến (SBD) bằng 6 a 7 . Tính khoảng cách từ C đến mặt phẳng (SBD) ?
A. 12 a 7
B. 3 a 7
C. 4 a 7
D. 6 a 7
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy. Biết SA = a AB = 2a RC = a * sqrt(3) a) Chứng minh CD. (SAD) SD và (ABCD). c) Tính khoảng cách từ điểm D đến (SBC). b) Tính góc giữa
Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật. Cạnh SA vuông góc với mặt phẳng (ABCD). Biết AB = a, AD = 2a, góc giữa cạnh bên SD và mp (ABCD) bằng 60 ° . Tính khoảng cách từ A đến mp (SBD).
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy. Biết SA = a AB = 2a RC = a * sqrt(3)
a) Chứng minh CD. (SAD) SD và (ABCD).b) Tính góc giữac) Tính khoảng cách từ điểm D đến (SBC).Cho hình chóp S . ABCD có đáy ABCD là hình thang cân, đáy lớn AB. Biết rằngAD = DC = CB = a , AB = 2a , cạnh bên SA vuông góc với đáy và mặt phẳng (SBD) tạo với đáy góc 45o. Gọi I là trung điểm của cạnh AB. Tính khoảng cách d từ I đến mặt phẳng (SBD).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; SA=SB=SC=SD=a√2; O là tâm của hình vuông ABCD.
a) C/m (SAC) và (SBD) cùng vuông góc với (ABCD).
b) C/m (SAC) ⊥(SBD)
c) Tính khoảg cách từ S đến (ABCD)
d) Tính góc giữa đường SB và (ABCD).
e) Gọi M là trung điểm của CD, hạ OH⊥SM, chứng minh H là trực tâm tam giác SCD
f) Tính góc giưa hai mặt phẳng (SCD) và (ABCD)
g) Tính khoảng cách giữa SM và BC; SM và AB.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh bên SA vuông góc với đáy. Biết khoảng cách từ A đến mặt phẳng (SBD) bằng a 3 Tính khoảng cách từ C đến mặt phẳng (SBD).
Cho hình chóp SABCD đáy là hình vuông tâm O cạnh a. SA=a căn 3. SA vuông góc với đáy. Tính góc a)(SBD) và (ABCD) b)(SBD) và (SAB) c)(SBC) và (ABCD) d)(SCD) và (ABCD)