Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt đáy (ABCD). Tính khoảng cách từ B đến (SCD).
A. 1
B. 21 3
C. 2
D. 21 7
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của AB và M là trung điểm của AD. Khoảng cách từ I đến mặt phẳng (SMC) bằng:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Tam giác SAB là tam giác đều, mặt phẳng SAB vuông góc với mặt phẳng ABCD. Gọi b là góc giữa mặt phẳng SAC và mặt phẳng SCD. Tính Cos b
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = 2 3 . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi M, N, P lần lượt là trung điểm của các cạnh SA, CD, CB. Tính côsin góc tạo bởi mặt phẳng (MNP) và (SCD).
A. 2 435 145
B. 11 435 145
C. 2 870 145
D. 3 145 145
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA= a, S B = a 3 . Mặt phẳng (SAB) vuông góc với mặt phẳng (ABCD). Khoảng cách từ điểm C đến mặt phẳng (SAD) là
A. 3 a 3
B. a 3 2
C. a 3
D. a 3 4
Cho hình chóp S. ABCD có đáy ABCD là hình thang vuông tại A và D, AD= DC = a . SAB là tam giác đều cạnh 2a và mặt phẳng (SAB) vuông góc với mặt phẳng (ABCD). Tính cosin của góc giữa hai mặt phẳng (SAB) và (SBC)
A. 2 7
B. 2 6
C. 3 7
D. 5 7
Cho hình chóp S.ABCD có ABCD là hình vuông tâm O, cạnh a SA vuông góc với mặt phẳng (ABCD) và SA=a căn 2. Tính khoảng cách từ:
a) C đến mặt phẳng (SAB).
b) từ A đến (SCD).
c) Từ O đến (SCD).
d) Khoảng cách giữa hai đường thẳng AB và SC.
Cho hình chóp S. ABCD có đáy là hình vuông cạnh a, tam giác đều SAB nằm trong mặt phẳng vuông góc với đáy.Gọi H, K lần lượt là trung điểm của AB, CD .Ta có góc tạo bởi hai mặt phẳng (SAB) và (SCD) bằng:
A. 2 3
B. 2 3 3
C. 3 3
D. 3 2
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Đường thẳng SA vuông góc với mặt phẳng đáy, SA = a. Gọi M là trung điểm của CD. Khoảng cách từ M đến mặt phẳng (SAB) là:
A . a 2 2
B . a
C . a 2
D . 2 a