Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, SA=a và SA vuông góc với đáy. Tang của góc giữa đường thẳng SO và mặt phẳng (SAB) bằng
A. 2
B. 2 2
C. 5
D. 5 5
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, cạnh SA vuông góc với đáy và mặt phẳng (SAB) tạo với đáy một góc 60 ° . Tính thể tích khối chóp S.ABCD.
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB nằm trong mặt phẳng vuông góc với (ABCD), S A B ^ = 30°, SA = 2a. Tính thể tích V của khối chóp S.ABCD.
A. a 3 3 6
B. a 3 3
C. a 3 9
D. a 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a,
cạnh bên SA = a 5 , mặt bên SAB là tam giác cân đỉnh S và
thuộc mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách
giữa hai đường thẳng AD và SC bằng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB cân tại S có S A = S B = 2 a nằm trong mặt phẳng vuông góc với đáy ABCD. Gọi α là góc giữa SD và mặt phẳng đáy (ABCD). Mệnh đề nào sau đây đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, cạnh bên SA=a 5 , mặt bên SAB là tam giác cân đỉnh S và thuộc mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng AD và SC bằng:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA vuông góc với đáy, S A = α 6 Góc giữa hai mặt phẳng (SBD) và mặt phẳng (ABCD) là
A. 45 °
B. 90 °
C. 60 °
D. 30 °
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi G là trọng tâm của tam giác SAB và M, N là trung điểm của SC, SD. Tính cosin của góc giữa hai mặt phẳng (GMN) và (ABCD).
A. 2 39 39
B. 3 6
C. 2 39 13
D. 13 13
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Biết BC = a 3 . Cạnh bên SA vuông góc với mặt phẳng (ABCD) và SA = a. Góc giữa SD với mặt phẳng (SAB) là:
A. 30o
B. 45o
C. 60o
D. 90o
Cho hình chóp S.ACBD có đáy là hình vuông cạnh a mặt bên SAB nằm trong mặt phẳng vuông góc với (ABCD), S A B ^ = 60°, SA = 2a Tính thể tích V của khối chóp S.ABCD
A. V = a 3 3 3
B. V = a 3 3
C. V = 2 a 3 3 3
D. V = a 3