trong mặt phẳng tọa độ oxy, cho 3 điểm A (3;3) B (4;-2) C(-1;-1)
1. tính vecto AB và vecto BC từ đó suy ra A,B, C là ba đỉnh của một tam giác
2. Tìm tọa độ điểm M thỏa mãn vecto MA + 4MB - MC = 0
3. Cho hình bình hành ABCD. Gọi I là trung điểm cạnh bC và E là điểm xác định bởi vecto AE = 2/3AC. CMR: vecto DI = AB - 1/2AD và 3 điểm D, E, I thẳng hàng
Cho hình bình hành ABCD tâm O. Gọi M, N lần lượt là trung điểm của BC, CD; G là trọng tâm tam giác ABC.
a) Chứng minh AM + AN = 3/2 AC và GA +3GB+GC+GD=0
c) Gọi I là điểm thỏa mãn AI= 3/4AB. Phân tích IN ; IG theo hai vec tơ BA và BC
Chứng minh 3 điểm N;G;I thẳng hàng.
Cho tứ giác ABCD. Gọi M,N là các điểm được xác định bởi MA- 2 MB = 0 , 2NC+3 NA = 0 và G là trọng tâm tam giác ABC
a/Chứng minh: AB+CD = AD+ CB .
b/ Tính AM theo AB và AN theo AC.
c/ Chứng minh ba điểm M,G, N thẳng hàng.
Câu 8: Cho hình bình hành ABCD tâm O. Các vectơ khác 0 ngược hướng với OB là
A. BD OD , . B. BD OD BO , , . C. DB DO , . D. BD BO , .
Câu 9: Cho ba điểm A, B, C thẳng hàng, trong đó điểm B nằm giữa hai điểm A và C. Khi đó các cặp vectơ nào sau đây cùng hướng?
A. CB và AB. B. AB và AC. C. AB và CB . D. BA và BC.
Câu 10: Cho một đa giác 1 2 2019 A A A ... có 2019 cạnh. Số vectơ khác 0 có điểm đầu và điểm cuối được tạo thành từ các đỉnh của đa giác
A. 4074342. B. 8148684. C. 4076361. D. 8152722
cho hình bình hành ABCD tâm O, M là trung điểm OB
a, chứng minh vecto AB- vecto DA +vecto CD=vecto AD
b, điểm N thuộc BC thỏa mãn vecto BN=k vectoBC , tìm k để A,M,N thẳng hàng
Cho hình bình hành ABCD có tâm I, đường thẳng qua B vuông góc với BD cắt AI tại M, đường thẳng qua D vuông góc với BD cắt AB tại N. Biết pt DM: x+y-4=0, điểm E(5;0) thuộc NI, trung điểm của BI là P(-1/2;-3). Tìm tọa độ A,B,C,D
Cho 4 điểm A, B, C, D không có 3 điểm nào thẳng hàng thỏa mãn \(\overrightarrow{AD}\) = \(\overrightarrow{BC}\). Khi đó ta có:
A. ABCD là hình bình hành. B. ABDC là hình bình hành.
C. ACBD là hình bình hành. D. ADBC là hình bình hành.
trong mặt phẳng hệ tọa độ Oxy cho hình thang cân ABCD có hai đường chéo BD và AC vuông góc với nhau tại H và AD 2 BC. Gọi M là điểm nằm trên cạnh AB sao cho AB 3 AM N là trung điểm HC. biết B 1 3 đường thẳng HM đi qua T 2 3 đường thẳng DN có phương trình x 2y 2 0 . tìm tọa độ các điểm A,C,D
a) Cho tứ giác ABCD không phải là hình bình hành, AC cắt BD tại O có OB = OD. Gọi M, N lần lượt là trung điểm của AB và CD, MN cắt AC tại I. Chứng minh rằng \(\overrightarrow{MI}=\overrightarrow{IN}\)
b) Cho tứ giác ABCD có 2 đường chéo cắt nhau tại I. Biết \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\). Chứng minh rằng tứ giác ABCD là hình bình hành
Cho hình bình hành ABCD và các điểm M, N thỏa mãn A M → = 2 A B → + 3 A D → ; A N → = x A B → + 5 A D → . Để ba điểm M, N, C thẳng hàng thì:
A. x = 1
B. x = 3
C. x = 5
D. x = 7