Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Ngọc Mai

Cho hình bình hành ABCD có góc A=60°; AD=2AB. Gọi M là trung điểm của AD , N là trung điểm của BC. Từ C kẻ đường thẳng vuông góc với MN tại E, cắt đường thẳng AB tại F. Chứng minh:

a) tứ giác MNCD là hình bình hành

b) E là trung điểm của CF

c) tam giác MCF cân

d)dùng dữ liệu góc A=60° để chứng minh ba điểm F,N,D thẳng hàng.

lê trọng đại(Hội Con 🐄)...
1 tháng 4 2020 lúc 8:23

a) từ me vuông góc fc ab vuông góc fc=> me song song ab
=> mn song song ab => mn song song dc (1)
mà ab song song dc (do abcd là hbh)
từ ad ss bc (do .....)
=> md sscn (2) => ma ss bn (5)
từ (1)(2) => mndc là hbh (..) (3)
từ ab =2ad => ab=am=mdmà ab =dc (..) => md=dc (4)_
từ (3)(4) => mndc là hình thoi (...)
b) từ ne ss ab (cmt)
=> ne ss bf
mà nb = nc => fe=ec => e là tđ cf
c) từ abcd là hbh => a = dcb =60
từ mn ss ab và (5) => abnm là hbh (..)
ta có : mcd= 60\ 2 = 30
mà dcf + mcf +mcd
90=30 + mcf
mcf = 60 (6)
trong tam giác mfc có me là đcao đồng thời là đường tt
=> tam giác mfc cân tại M (7)
từ (6)(7) => mfc đều
d)từ fmc đều => fm=fc=> f thuộc trung trực mc
từ mn =nc => n thuộc trung trực mc
từ dm =dc => d thuộc trung trực mc

từ 3 ý trên => f,n,d thẳng hàng
(nếu đúng mình xin 1 tích nha :>> )

Khách vãng lai đã xóa

Giải thích các bước giải:

Ta có tứ giác ABCD là hbh

=> AD=BC; AD//BC

Mà M và N là trung điểm của AD và BC

=> MD=NC

Xét tứ giác MNCD có ;

MD//NC

MD=NC

=> Tứ giác MNCD là hbh

Mà MD=CD=AD/2

=> Tứ giác MNCD là hình thoi

b) Ta có tứ giác MNCD là hình thoi

=> CD//MN

Xét ΔBFC có: EN//BF

N là trung điểm của BC

=> EN là đườngtrung bình của tam giác BFC

=> E là trung điểm của CF

c) Ta có tứ giác MNCD là hình thoi

=> CM là tia phân giác của gốc BCD

=> Góc BCA=Góc BCD/2=60/2=30

Xét tam giác BFC có NE//BF

                                 NE⊥FC

=> BF⊥FC

=> Góc BCF=90- góc FBC=90-góc BAD=30

=> Góc FCM=Góc FCB+ góc BCM=60

Xét tam giác MCF có ME vừa là đường cao vừa là trung tuyến

=> ΔMCF cân tại M

Mà góc MCF=60

=>ΔMCF đều

d) Ta có : FM=FC( do ΔMCF đều) => F∈ trung trực của MC

DM=DC(=AD/2) =>D∈trung trực của MC

Có NC=NM=> N∈trung trực của MC

=> F;N;D cùng thuộc trung trực của MC

=> F;N;D thẳng hàng

image

Khách vãng lai đã xóa

Các câu hỏi tương tự
Vũ Nhật Mai
Xem chi tiết
lomg vu
Xem chi tiết
Trà My
Xem chi tiết
Lê Ngọc Anh
Xem chi tiết
Phi Diệc Vũ
Xem chi tiết
Trang Đoàn
Xem chi tiết
Nguyễn Thị Hải Yến
Xem chi tiết
Phi Diệc Vũ
Xem chi tiết
Lê Ngọc Anh
Xem chi tiết