Cho hình bình hành ABCD . AB > AD , AE vuông góc với BD , CF vuông góc với BD (E,F thuộc BD) . AE kéo dài cắt CD tại H . CF kéo dài cắt AB tại K . Chứng minh :
a) Tứ giác AECF là hình bình hành.
b) Tứ giác AHDK là hình bình hành.
Cho hình bình hành ABCD . AB > AD , AE vuông góc với BD , CF vuông góc với BD (E,F thuộc BD) . AE kéo dài cắt CD tại H . CF kéo dài cắt AB tại K . Chứng minh :
a) Tứ giác AECF là hình bình hành.
b) Tứ giác AHDK là hình bình hành.
Cho hình bình hành ABCD . AB > AD , AE vuông góc với BD , CF vuông góc với BD (E,F thuộc BD) . AE kéo dài cắt CD tại H . CF kéo dài cắt AB tại K . Chứng minh :
a) Tứ giác AECF là hình bình hành.
b) Tứ giác AHDK là hình bình hành.
Cho HBH ABCD , Kẻ AE , CF thứ tự là phân giác của góc A , góc C ( E thuộc DC , F thuộc AB )
a, chứng minh tam giác ADE cân
b, chứng minh BC = BF
c, chúng minh DE = BF
d, chứng minh AECF là hình bình hành
Cho hình bình hành ABCD (AB > AD). Vẽ AE, CF vuông góc BD. AE kéo dài cắt CD tại H và CF kéo dài cắt AB tại K. Chứng minh rằng:
a) Tứ giác AECF là hình bình hành
b) AC, BD, HK đồng quy
Cho hình bình hành ABCD, kẻ AE và CF vuông góc với BD.
a) Tứ giác AECF là hình gì? Vì sao?
b) AE cắt CD tại I, CF cắt AB tại K. Chứng minh trung điểm O của IK thuộc đường chéo BD.
c) Vẽ BM và DN vuông góc AC. Chứng minh EMFN là hình bình hành.
d) Các phân giác AG và BH của tam giác AOB cắt nhau tại P. Các phân giác DY, Cl của tam giác DOC cắt nhau tại Q. Chứng minh O là trung điểm PQ.
Cho hình bình hành ABCD.AE ,CF vuông góc với BD . Chứng minh
a, Tứ giác AECF là hình bình hành
b, AI=CK Biết AE cắt CD tại I,CF cắt AB tại K
c,BE = DF
Bài 4 (3,0 điểm). Cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE = CF. a) Chứng minh tứ giác AECF là hình bình hành. b) Chứng minh DE = BF c) Gọi O là giao điểm của AC và BD. I là điểm đối xứng của A qua D. Chứng minh OD // CI. d) Chứng minh BD, EF, AC đồng quy tại một điểm.