1.
a) Vẽ vào vở ΔABC, biết AB 2,5 cm ; AC 3,5 cm ; BC 7 cm .
b) Vẽ vào vở ΔEFG , có EF FG GE 3 cm . Sau đó đo ba góc của tam giác EFG rồi cho biết số đo của mỗi góc .
c) Sắp xếp lại trình tự các bước chứng minh bài toán sau
Bài toán : ΔAMB và ΔANB có MA MB , NA NB ( h.69 ) . Chứng minh rằng ∠AMN ∠ BMN .
Các bước chứng minh :
i) Do đó ΔAMN ΔBMN ( c.c.c )
ii) MN : cạnh chung ;
MA MB ( giả thiết )
NA NB ( giả thiết )
iii) Suy ra ∠AMN ∠BMN (hai góc tương ứng )...
Đọc tiếp
1.
a) Vẽ vào vở ΔABC, biết AB = 2,5 cm ; AC = 3,5 cm ; BC = 7 cm .
b) Vẽ vào vở ΔEFG , có EF = FG = GE = 3 cm . Sau đó đo ba góc của tam giác EFG rồi cho biết số đo của mỗi góc .
c) Sắp xếp lại trình tự các bước chứng minh bài toán sau
Bài toán : " ΔAMB và ΔANB có MA = MB , NA = NB ( h.69 ) . Chứng minh rằng ∠AMN = ∠ BMN " .
Các bước chứng minh :
i) Do đó ΔAMN = ΔBMN ( c.c.c )
ii) MN : cạnh chung ;
MA = MB ( giả thiết )
NA = NB ( giả thiết )
iii) Suy ra ∠AMN = ∠BMN (hai góc tương ứng )
iv) ΔAMN và ΔBMN có :
2 . a) Ví dụ
Cho hình 70 , chứng minh DE là tia phân giác của ∠ADB .
Xét ΔADE và ΔBDE , từ hình vẽ ta có :
AD = BD ; AE = BE ; DE là cạnh chung.
Do đó ΔADE = ΔBDE ( c.c.c ) , suy ra ∠ADE = ∠BDE ( hai góc tương ứng ) .
b) Em hãy giải bài toán sau và viết vào vở như ví dụ trên .
Bài toán : Cho đoạn thẳng AB = 5 cm . Vẽ đường tròn tâm A bán kính 3 cm và đường tròn tâm B bán kính 4,5 cm , chúng cắt nhau ở C và D . Chứng minh rằng AB là tia phân giác của góc CAD .