giải hệ phương trình
a,\(\hept{\begin{cases}2x^2+xy=3x\\2y^2+xy=3y\end{cases}}\)b,\(\hept{\begin{cases}y^2=x^3-3x^2+2x\\x^2=y^3-3y^2+2y\end{cases}}\)
c,\(\hept{\begin{cases}3x+y=\frac{1}{x^2}\\3y+x=\frac{1}{y^2}\end{cases}}\)
d,\(\hept{\begin{cases}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{cases}}\)
Cho \(\hept{\begin{cases}a+b+c=1\\a^2+b^2+c^2=1\\\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\end{cases}}\) Tính A = \(xy+yz+zx\)
\(\orbr{\begin{cases}\\\end{cases}\frac{x^2-y^2}{xy}-\frac{1}{x+y}\hept{ }\frac{x^2}{y}-\frac{y^2}{x}\hept{ }\orbr{\begin{cases}\\\end{cases}}}\)
Giải các phương trình sau:
a)\(\hept{\begin{cases}x+y+xy=8\\y+z+yz=15\\z+x+zx=35\end{cases}}\)
b)\(\hept{\begin{cases}x^3-3x-2=2-y\\y^3-3y-2=4-2z\\z^3-3z-2=6-3x\end{cases}}\)
c) \(\hept{\begin{cases}x^3+\frac{1}{3}y=x^2+x-\frac{4}{3}\\y^3-\frac{1}{4}z=y^2+y-\frac{5}{4}\\z^3+\frac{1}{5}x=z^2+z-\frac{6}{5}\end{cases}}\)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!! PLEASE!!!
\(CMR:\hept{\begin{cases}\frac{x}{a}+\frac{y}{b}=\frac{z}{c}=1&\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0&\end{cases}}\)
Thì \(:\hept{\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1}\)
Câu 1: x>0,Tìm min A = \(3x^2\)+\(\frac{2}{x^3}\)
Câu 2: x,y>0 Tìm min S = \(\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\)
Câu 3: \(\hept{\begin{cases}a,b,c>0\\a+b+c=1\end{cases}}\) Tìm min P \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Giải hệ pt
a)\(\hept{\begin{cases}x^2+y^2+x+y=\left(x+1\right)\left(y+1\right)\\\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2=1\end{cases}}\)
b)\(\hept{\begin{cases}x+\frac{1}{x}+y+\frac{1}{y}=4\\\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2=4\end{cases}}\)
giúp mk vs
giải hệ phương trình:
\(\hept{\begin{cases}\frac{1}{2}\left(x+2\right)\left(y+3\right)=\frac{1}{2}xy+50\\\frac{1}{2}\left(x-2\right)\left(y-2\right)=\frac{1}{2}xy-32\end{cases}}\)
cho \(\hept{\begin{cases}a+b-c=1\\a^2+b^2+c^2=1\\\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\end{cases}}CMR:xy+yz+zx=0\)