Nghiệm của hệ phương trình sau là:
A. x = 2, y = -3 B. x = -2, y = 3
C. x = -1, y = -2 D. x = 1, y = 5
giải hệ
1, \(\hept{\begin{cases}y^6+y^3+2x^2=\sqrt{xy-x^2y^2}\\8xy^3+2y^3+1\ge4x^2+2\sqrt{1+\left(2x-y\right)^2}\end{cases}}\)
2, \(\hept{\begin{cases}x+\frac{y}{\sqrt{1+x^2}+x}+y^2=0\\\frac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\end{cases}}\)
1.Giải hệ phương trình: \(\hept{\begin{cases}\left(x+\sqrt{x^2+1}\right)\left(\sqrt{y^2+1}-y\right)=1\\3\sqrt{x+2y-2}+x\sqrt{x-2y+6}=10\end{cases}.}\)
2.cho các số thực không âm x,y,z thỏa mãn: \(x^3+y^3+z^3=3\)
Tìm Min \(P=\frac{xyz+\left(x+y+z\right)^2}{xy+yz+xz}-\frac{1}{xy+yz+xz+1}\)
Cho hệ phương trình x + y + 1 + 1 = 4 x + y 2 + 3 . x + y 2 x - y = 3 2 .Giả sử (x;y) là cặp nghiệm của hệ phương trình. Khi đó, A = 9x2 – 12y + 1 bằng
A. 3
B. 9
C. 4
D. 7
Giúp em giải các hệ phương trình này với
a)\(\begin{cases}x^4+2y^3-x=-\dfrac{1}{4}+3\sqrt{3}\\ y^4+2x^3-y=-\dfrac{1}{4}-3\sqrt{3}\end{cases}\)
b) \(\begin{cases} x+\dfrac{78y}{x^2+y^2}=20\\ y+\dfrac{78x}{x^2+y^2}=15\end{cases}\)
c) \(\begin{cases}\left(1-\dfrac{12}{y+3x}\right)\cdot \sqrt{x}=2\\ \left(1+\dfrac{12}{y+3x}\right)\cdot\sqrt{y}=6 \end{cases}\)
d) \(\begin{cases} \sqrt{x+1}+\sqrt[4]{x-1}-\sqrt{y^4+2}=y\\ x^2+2x(y-1)+y^2-6y+1=0\end{cases}\)
e) \(\begin{cases} \sqrt{4x^2+(4x-9)(x-y)}+\sqrt{xy}=3y\\ 4\sqrt{(x+2)(y+2x)}=3(x+3)\end{cases}\)
Hệ phương trình
2x 2z 3 0
3 8 0
3x 2 1 0
y
x y z
y z
có nghiệm là:
A. (x;y;z)=(-1;3;2) B. (x;y;z)=(1;-3;2) C. (x;y;z)=(1;-3;-2) D. (x;y;z)=(-1;3;-2)
GIẢI HỘ MÌNH VỚI, CẦN GẤP Ạ
giải hệ phương trình sau:
\(\hept{\begin{cases}\left(y+1\right)^2+\sqrt{\left(-3x-2\right)^3}=1+y\sqrt{-3x-2}-3xy\\x^3+3x^2+12x-\left(3x-1\right)y+6=0\end{cases}}\)
Cho hệ phương trình m x + ( 2 m - 3 ) y = 2 x + ( m - 2 ) y = 1 .Trong các khẳng định sau, khẳng định đúng là:
A. Hệ phương trình có nghiệm duy nhất nếu
B. Hệ phương trình có vô số nghiệm nếu
C. Hệ phương trình vô nghiệm nếu
D. Hệ phương trình luôn có nghiệm duy nhất với mọi m
Giải hệ PT: \(\left\{{}\begin{matrix}x+\sqrt{\left(x+1\right)y}=2y-1\\\sqrt{2x+3}+\sqrt{y}=x^2-y\end{matrix}\right.\)