Để hệ pt có nghiệm duy nhất thì : a/a' # b/b' => m/1 # 1/m
=> m^2 # 1 => m # 1 hoặc m # -1
Để hệ pt có nghiệm duy nhất thì : a/a' # b/b' => m/1 # 1/m
=> m^2 # 1 => m # 1 hoặc m # -1
Cho hệ phương trình
\(\hept{\begin{cases}mx+y=m\\x+my=1\end{cases}}\)
Tính giá trị m để hệ phương trình trên có nghiệm duy nhất
Cho hệ phương trình
\(\hept{\begin{cases}mx+y=m\\x+my=1\end{cases}}\)
Tìm giá trị m để hệ phương trình trên có nghiệm duy nhất
Cho hệ phương trình
Tính gía trị m để hệ phương trình trên có nghiệm duy nhất
\(\hept{\begin{cases}mx+y=m\\x+my=1\end{cases}}\)
Cho hệ phương trình
\(\hept{\begin{cases}mx+y=m\\x+my=1\end{cases}}\)
TÌm giá trị m để hệ phương trình có nghiệm duy nhất
1.Cho hpt \(\hept{\begin{cases}nx-y=4\\x+y=1\end{cases}}\)
a) Với giá trị nào của n thì hệ phương trình có duy nhất nghiệm?
b) Với giá trị nào của n thì hệ phương trình vô nghiệm
Bài 3: Cho hệ phương trình \(\hept{\begin{cases}3x+my=4\\x+y=1\end{cases}}\)
a. Tìm m để hệ phương trình trên có nghiệm duy nhất, vô số nghiệm
b. Tìm m để hệ phương trình trên có nghiệm x<0, y>0
Cho hệ phương trình
\(\hept{\begin{cases}mx+y=m\\x+my=1\end{cases}}\)
Tim mm để hệ phương trình trên có nghiệm duy nhất
Cho hệ phương trình: \(\hept{\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}}\)(m là tham số).
Tìm m để hệ phương trình đã cho có nghiệm duy nhất sao cho x.y đạt giá trị nhỏ nhất.
Cho hệ phương trình:\(\hept{\begin{cases}x-my=m+3\\mx-4y=-2\end{cases}}\)
a,tìm tất cả các giá trị m nguyên để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y>0
Cho hệ phương trình ẩn (x;y), tham số m: \(\hept{\begin{cases}mx+4y=6\\x+my=3\end{cases}}\). Tìm giá trị của m để hệ đã cho có nghiệm duy nhất.