Để hệ pt có nghiệm duy nhất khi \(3\ne\frac{2}{m}\Leftrightarrow3m\ne2\Leftrightarrow m\ne\frac{2}{3}\)
Với \(m\ne\frac{2}{3}\)hệ pt có nghiệm suy nhất
\(\hept{\begin{cases}3x+2y=m\\x+my=3\end{cases}\Leftrightarrow\hept{\begin{cases}3x+2y=m\\3x+3my=9\end{cases}\Leftrightarrow\hept{\begin{cases}\left(2-3m\right)y=m-9\\x+my=3\end{cases}}}}\)
\(\left(1\right)\Rightarrow y=\frac{m-9}{2-3m}\)
\(\left(2\right)\Rightarrow x=3-my=3-\frac{m^2-9m}{2-3m}=\frac{6-9m-m^2+9m}{2-3m}=\frac{6-m^2}{2-3m}\)
Thay vào biểu thức trên ta được :
\(\frac{18-3m^2}{2-3m}+\frac{4m-36}{2-3m}=-5\Rightarrow-18-3m^2+4m=-10+15m\)
\(\Leftrightarrow-3m^2-11m-8=0\Leftrightarrow\left(3m+8\right)\left(m+1\right)=0\Leftrightarrow m=-\frac{8}{3};m=-1\)( tmđk )
check lại hộ mình nhé =)