1. Thay x = 3, y = 2 vào hệ phương trình ta được :
\(\left\{{}\begin{matrix}3m+18=3\\3+2m=m-2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3m=3-18=-15\\2m-m=-2-3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}m=-\frac{15}{3}=-5\\m=-5\end{matrix}\right.\)
=> \(m=-5\)
Vậy m nhận giá trị -5 để phương trình có nghiệm là ( 3, 2 )
2. - Để hệ phương trình vô nghiệm thì :
\(\frac{m}{1}=\frac{9}{m}\ne\frac{3}{m-2}\) ( ĐKXĐ : \(\left\{{}\begin{matrix}m\ne0\\m\ne2\end{matrix}\right.\) )
=> \(\left\{{}\begin{matrix}m=\frac{9}{m}\\m\ne\frac{3}{m-2}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}m^2=9\\m^2-2m\ne3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}m=\pm\sqrt{9}=\pm3\\m^2-2m+1\ne3+1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}m=\pm3\\\left(m-1\right)^2\ne4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}m=\pm3\\\left[{}\begin{matrix}m-1\ne2\\m-1\ne-2\end{matrix}\right.\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}m=\pm3\\\left[{}\begin{matrix}m\ne3\\m\ne-3\end{matrix}\right.\end{matrix}\right.\)
=> \(m\in\left\{\varnothing\right\}\)
Vậy không tồn tại m để phương trình trên vô nghiệm .