Cho hình chữ nhật ABCD và điểm E thuộc cạnh AD. Xác định vị trí các điểm F thuộc cạnh AB, G thuộc cạnh BC, H thuộc cạnh CD sao cho tứ giác EFGH có chu vi nhỏ nhất.
cho hình chữ nhật ABCD và điểm E thuộc cạnh AD. xác định vị trí của các điểm : F thuộc caanhj AB, G thuộc cạnh BC, H thuộc cạnh CD sao cho tứ giác EFGH có chu vi nhỏ nhất
cho hình vuông ABCD. điểm M thuộc cạnh AB,N thuộc cạnh CD, sao cho góc MBN=45 độ. gọi giao điểm cuarBM,BN với AC theo thứ tự là E và F. CMR:
a, BCNE nội tiếp
b, tam giác BFM là tam giác gì ?
cho hình vuông ABCD có chiều dài cạch là a và có O là giao điểm hai đường chéo. Lấy các điểm E;F;G;H trên các cạnh AB,BC,CD,DA tương ứng sao cho AE=BF=CG=DH=x
1) chứng minh 4 điểm E;F;G;H cùng thuộc 1 đường tròn tâm O
2) chứng minh tứ giác EFGH là hình vuông
AI GIẢI GIÚP MIK VỚI
Cho HCN ABCD (ab>AD) E thuộc CD sao cho AE = Ab. F thuộc AD sao cho EF vuông góc với EA. CMR AC vuông góc với BF.
Cho tam giác ABC có AB=10cm,AC=16 cm. M là trung điểm của cạnh BC. Lấy điểm F thuộc cạnh AC và điểm E thuộc cạnh AB sao cho AF=2AE, EF cắt AM tại G. tính tỉ số GF/GE
Cho hình vuông ABCD có cạnh bằng 1dm . Tính cạnh của tam giác đều AEF có E thuộc CD , F thuộc BC.
Giúp mk với!!!
Cho tứ giác ABCD có 2 đường chéo AC và BD vuông góc với nhau. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD và DA.
a) C/m: Bốn điểm E, F, G, H cùng thuộc một đường tròn.
b) Giả sử AB = 24 cm và BD = 18 cm. Tính bán kính của đường tròn đi qua bốn điểm E, F, G, H.
Cho hình thoi ABCD có hai đường chéo cắt nhau tại O. Gọi H, I, K, L lần lượt là hình chiếu của O trên các cạnh AB, BC, CD, DA. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC,CD,DA.
a) Chứng minh rằng bốn điểm H, I, K, L cùng thuộc một đường tròn. Tính bán kính của đường tròn đó trong trường hợp AC=4cm, góc A=60 độ
b) Chứng minh rằng bốn điểm M, N, P, Q cùng thuộc một đường tròn. Khi đó, tìm điều kiện của hình thoi để hai đỉnh B, D cũng thuộc đường tròn đó.