Bài 1 : Cho hình thang ABCD có độ dài đáy AB bằng 5cm, CD 15cm, đường chéo DB 12cm, AC 16cm. Từ A kẻ đường thẳng song song với BD cắt đường thẳng CD tại E
a. Cm tam giác AEC vuông
b. Tính diện tích hình thang ABCD
Bài 2 : Cho hình chữ nhật ABCD. Qua A kẻ đường thẳng vuông góc đường chéo BD tại H. Biết rằng AB bằng 20cm, AH bằng 12cm. Tính chu vi HCN ABCD
Cho đường tròn đường kính AB =2a đường kính CD thay đổi. Dựng đường thẳng d đi qua B và vuông góc với AB. Hai đường thẳng AC, AD cắt d tại M, N. Đường tròn ngoại tiếp tam giác CMN cắt đoạn AB tại I.
Cho MN = 5 a tính độ dài AI
TÌm GTNN của diện tích tứ giác CDNM?
Bài 1 : Cho hình vuông ABCD có cạnh bằng 3 cm . Chứng minh rằng : 4 đỉnh của hình vuông ABCD cùng nằm trên 1 đường tròn . Hãy tính bán kính đường tròn đó
Bài 2 : Cho tam giác nhọn ABC . Vẽ đường tròn tâm O , bán kính BC , nó cắt các cạnh AB, AC theo thứ tự ở D và E
a)CMR: CD vuông góc với AB , BE vuông góc với AC
b) gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc BC
Bài 3:Cho hình thang ABCD , AB//CD, AB<CD , có góc C=góc D=60 độ , CD=2AD . Chứng minh 4 điểm A, B, C, D cùng thuộc 1 đường tròn. Tính diện tích đường tròn đó biết CD=4cm
Bài 4:Cho tam giác ABC vuông tại A. Trên AB, AC lần lượt lấy các điểm D, E . Gọi M, N, P, Q lần lượt là trung điểm của DE , EB, BC, CD. Chứng minh 4 điểm M, N, P, Q cùng thuộc 1 đường tròn
cho đường tròn tâm O, đường kính AB và một điểm C di động trên AB. Vẽ các đường tròn tâm I đường kính AC và đường tròn tâm K đường kính BC. Tia Cx vuông góc với AB tại C, cắt (O) tại M. Đoạn thẳng MA cắt đường tròn (I) tại E và đoạn thẳng MB cắt đường tròn (K) tại F.
a) chứng minh tứ giác MECF là hcn và EF là tiếp tuyến chung của (I) và (K)
b) cho AB=4cm, xác định điểm C trên AB để diện tích tứ giác IEKF là lớn nhất
c) khi C khác O đường tròn ngoại tiếp hcn MECF cắt đường tròn (O) tại P ( khác M), đường thẳng PM cắt AB tại N. Chứng minh tam giác MPF đồng dạng với tam giác MBN.
d) chứng minh 3 điểm N,E,F thẳng hàng.
Cho nửa đường tròn tâm O, đường kính AB=2R, tiếp tuyến Ax,By với nửa đường tròn tâm O ( Ax, By nằm cùng phía với nửa đường tròn đó). Tiếp tuyến tại M với đường tròn tâm O ( M khác A,B) cắt Ax, By lần lượt tại C, D.
a) Chứng minh: A,C,O,M thuộc 1 đường tròn ( mik làm được rồi)
b) Chứng minh: Góc COD = 90 độ, và AC.BD = R^2
c) Gọi N là giao điểm AD và BC. Tia MN cắt AB tại H. Chứng minh N là trung điểm của HM
d) Cho S tứ giác ABCD= 20 cm^2 , Ab = 5cm. Tính diện tích tam giác ANB
Cho đường tròn (O) đường kính AB. Kẻ AC,BD sống song vs nhau.
a) Cm ABCD là hcn
b Dựng một dây cũng MN vuông góc với AC(MN<AB), cắt AC, BD tại E,F. Cm MN, EF cùng chung điểm
Help me
Cho hình vuông ABCD .Vẽ đường tròn (D; DC) và đường tròn (O) đường kính BC, cắt nhau tại một điểm thứ hai là E.tia CE cắt AB tại M. Tia BE cắt AD tại N.chứng minh: a) N là trung điểm của AD. b) M là trung điểm của AB
cho tam giác ABC vuông tại A (AB>AC). Trên cạnh AC lấy điểm M khác A và C. Vẽ đường tròn đường kính MC cắt BC tại E và cắt đường thẳng MB tại D (E khác C và D khác M)
a. C/m ABCD nội tiếp
b. C/m góc ABD = góc MED
c. Đường thẳng AD cắt đường tròn đường kính MC tại N. Đường thẳng MD cắt Cn tại K. MN cắt CD tại H. C/m KH//NE
cho tam giác ABC vuông tại A (AB>AC). Trên cạnh AC lấy điểm M khác A và C. Vẽ đường tròn đường kính MC cắt BC tại E và cắt đường thẳng MB tại D (E khác C và D khác M)
a. C/m ABCD nội tiếp
b. C/m góc ABD = góc MED
c. Đường thẳng AD cắt đường tròn đường kính MC tại N. Đường thẳng MD cắt Cn tại K. MN cắt CD tại H. C/m KH//NE