1.Trong mặt phẳng hệ tại độ Chy cho hình thang cân. ABCD có hai đường chéo BD và AC vuông góc với nhau tại H và AD = 2BC . Gọi M là điểm nằm trên cạnh AB sao cho AB = 3AM, X' là trung điểm. HC, Biết B(- 1/- 3) , đường thẳng HM đi qua điểm T(2;-3) , đường thẳng DN có phương trình x + 2y - 2 = 0 . Tìm tọa độ các điểm A, C và D.
cho tam giác ABC nội tiếp đường tròn tâm I, có đỉnh A thuộc đường thẳng d:x+y-2=0, điểm D(-2;1) là chân đường cao của tam giác ABC hạ từ A. Gọi E(3;1) là chân đường vuông góc hạ từ B xuống AI, điểm P(2;1) thuộc cạnh AC. Tìm tọa độ các đỉnh của tam giác ABC
cho tam giác ABC nội tiếp đường tròn tâm I, có đỉnh A thuộc đường thẳng d:x+y-2=0, điểm D(-2;1) là chân đường cao của tam giác ABC hạ từ A. Gọi E(3;1) là chân đường vuông góc hạ từ B xuống AI, điểm P(2;1) thuộc cạnh AC. Tìm tọa độ các đỉnh của tam giác ABC
Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng chứa các cạnh AB,AC lần lượt là 2x - y + 1 = 0 và x + y - 4 = 0. Phương trình đường thẳng AD là
Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng chứa các cạnh AB,AC lần lượt là
2x - y + 1 = 0 và x + y -4 = 0. Phương trình đường thẳng AD là
Trong mặt phẳng với hệ trục tọa độ
Oxy Cho hai đường thẳng ∆ 1 và ∆ 2
lần lượt có phương trình: x-2x+1=0
và x-2y+4=0,điểm I(2;1) Phép vị tự
tâm I tỉ số k biến đường thẳng ∆ 1
thành ∆ 2 . Tìm k ?
A. 1
B. 2
C. 3
D. 4
Cho hình chóp S ABCD có đáy ABCD là một tứ giác . Gọi O là giao điểm của 2 đường chéo, AC và BD ở mặt đáy, M là điểm nằm trên đường chéo AC hãy vẽ thiết diện của hình chóp cắt bởi mp qua M, song song với BD và song song với SA trong các trường hợp a. M là trung điểm của AO b. M là trung điểm của CO.
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD, O là giao điểm hai đường chéo, AC = a, BD = b, tam giác SBD đều. Gọi I là điểm di động trên đoạn AC với AI = x (0 < 0 < a). Lấy là mặt phẳng đi qua I và song song với mặt phẳng (SBD).
a) Xác định thiết diện của mặt phẳng với hình chóp S.ABCD.
b) Tìm diện tích S của thiết diện ở câu a) theo a, b, x. Tìm x để S lớn nhất.
Cho tứ diện ABCD. Qua điểm M nằm trên AC ta dựng một mặt phẳng (α) song song với AB và CD. Mặt phẳng này lần lượt cắt các cạnh BC, BD và AD tại N, P và Q.
a) Tứ giác MNPQ là hình gì?
b) Gọi O là giao điểm hai đường chéo của tứ giác MNPQ. Tìm tập hợp các điểm O khi M di động trên đoạn AC.